16–21 Sept 2018
Giardini Naxos
Europe/Rome timezone

Strategies toward the Realization of the Helical Fusion Reactor FFHR-c1

17 Sept 2018, 11:00
2h
Pantelleria Hall - Terrace - ATA Hotel Naxos Beach Resort (Giardini Naxos)

Pantelleria Hall - Terrace - ATA Hotel Naxos Beach Resort

Giardini Naxos

Via Recanati, 26 Giardini Naxos, Messina - Sicily (Italy)
Experimental Fusion Devices and Supporting Facilities P1

Speaker

Dr Junichi Miyazawa (National Institute for Fusion Science)

Description

Design studies on the helical fusion reactor FFHR-c1 has been progressed. The main goal of the FFHR-c1 is to demonstrate one-year steady-state sustainment of the fusion plasma with self-produced electricity and tritium. The major radius of the plasma, R, is ~10 m and the magnetic field strength at the plasma center, B, is ~8 T. High-temperature superconductor (HTS) magnet coils are adopted in the design. During the one-year operation, ~370 MW of fusion power is sustained with ~25 MW of auxiliary heating power supplied by the electron cyclotron heating (ECH) of ~220 GHz. Then, the fusion gain, Q, is ~15. A liquid metal divertor system named the REVOLVER-D is adopted for the reasons of easy maintenance and a high permissible heat load. In this system, ten sets of molten tin showers are discretely inserted to the inboard side of the ergodic layer surrounding the main plasma. A cartridge-type molten salt (or liquid metal) blanket named the CARDISTRY-B is also adopted for easy maintenance. For the realization of the FFHR-c1, it is necessary to accumulate experiences on the new technologies of the HTS magnet coils, the REVOLVER-D, and the CARDISTRY-B. Including these three, we have defined 22 important issues that should be resolved before building the FFHR-c1. The strategy to efficiently address the 22 issues has been also discussed. As a result, we propose a step-by-step approach by developing FFHR-01 (R ~ 0.4 m and B ~ 3 T) for basic studies on HTS coils and the REVOLVER-D, FFHR-a1 (R ~ 2.5 m and B ~ 4 T) for demonstration of one-year operation under a non-nuclear condition, and FFHR-b1 (same R and B as FFHR-a1) for DT operation, before FFHR-c1. The FFHR-b1 plays a role of volumetric neutron source (VNS) and the FFHR-a1 corresponds to the cold test of the VNS.

Co-authors

Dr Junichi Miyazawa (National Institute for Fusion Science) Dr Hitoshi Tamura (National Institute for Fusion Science) Dr Teruya Tanaka (National Institute for Fusion Science) Dr Takanori Murase (National Institute for Fusion Science) Dr Takuya Goto (National Institute for Fusion Science) Dr Nagato Yanagi (National Institute for Fusion Science) Dr Ryuichi Sakamoto (National Institute for Fusion Science) Dr Akio Sagara (National Institute for Fusion Science)

Presentation materials

There are no materials yet.