Speaker
Description
An intense femtosecond laser pulse propagating in the plasma medium produces promising plasma optics, such as the relativistic flying mirror (RFM) [1] and relativistic oscillating mirror (ROM) [2] (for details see review [3]). These plasma mirrors generate intense attosecond laser pulses [4,5]. The frequency upshift of the reflected laser pulse and the decrease in the pulse duration are common features originating from the double Doppler effect [4,5]. In particular, a curved RFM can intensify the incident high power laser radiation over the conventional focused intensity through $r (D/\lambda) \gamma^3$ [6], where $r$ is the reflection coefficient of the RFM, $D$ the beam size of the reflected laser on the RFM, $\lambda$ the wavelength of the laser, and $\gamma$ the Lorentz factor of the RFM. Due to the intensification capability, the RFM can be applied to the study of strong field quantum electrodynamics (SF-QED). Recent theoretical investigation makes it possible to formulate the analytical expression for the electric field focused by the curved RFM, and to investigate the creation rate of electron-positron pairs under that field [6]. Another interesting application is to collide the intensified laser focus with energetic electrons for the gamma-photon generation via the nonlinear Compton scattering.
In this talk, we present the optical characteristics of a curved RFM, and its application to electron-positron pair production via the Schwinger mechanism and to nonlinear Compton scattering with energetic electrons.
References
1. S. V. Bulanov, T. Zh. Esirkepov, and T. Tajima, Phys. Rev. Lett. 91, 085001 (2003).
2. S. V. Bulanov, N. M. Naumova, and F. Pegoraro, Phys. Plasmas 1, 745 (1994).
3. S. V. Bulanov, T. Zh. Esirkepov, M. Kando, A. S. Pirozhkov, and N. N. Rosanov, Phys.-Usp. 56, 429 (2013).
4. N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, G. Mourou, Phys. Rev. Lett. 93, 195003 (2004).
5. H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, Ph. Martin, and F. Quéré, Nat. Commun. 5, 3403 (2014).
6. T. M. Jeong, S. V. Bulanov, P. Valenta, G. Korn, T. Zh. Esirkepov, J. K. Koga, A. S. Pirozhkov, and M. Kando, Phys. Rev. A 104, 053533 (2021).