3–6 Feb 2026
ENEA Centro Ricerche Frascati
Europe/Rome timezone
La lingua ufficiale della conferenza è l'italiano. Il formato dei posters è A0 verticale. La scadenza per la quota "earlybird" è spostata al 31 dicembre 2025.

Theory and simulation of phase space transport in burning plasmas

Not scheduled
20m
Bruno Brunelli hall (ENEA Centro Ricerche Frascati)

Bruno Brunelli hall

ENEA Centro Ricerche Frascati

Via Enrico Fermi 45 Frascati Rome
Invited

Speaker

matteo Valerio falessi (Center for Nonlinear Plasma Science and C.R. ENEA Frascati, Frascati, Italy)

Description

Burning plasmas in fusion reactors are complex systems where energetic particles (EP) play a fundamental role in cross-scale interactions [1]. This study reviews phase space zonal structures (PSZS) [2-5] and their significance in transport analyses. Using synthetic diagnostics from the HMGC and ORB5 codes [6,7], we illustrate the role of PSZS in capturing transport dynamics in burning plasmas Gyrokinetic simulations accurately. While transport studies assume Maxwellian equilibria, for EPs and burning plasmas in general, a more comprehensive description is needed to capture self-organization processes. By deriving governing equations for PSZS using multi-scale perturbation theory, we can model modifications of the equilibrium caused by resonant interactions. This approach allows us to recover standard transport equations in the proper limit.

A new phase space transport workflow called ATEP [8] is proposed to accurately describe PSZS dynamics. This workflow enables us to restart Global Gyrokinetic codes from PSZS distributions, extending simulations over long time scales without assuming a model distribution function. By comparing global gyrokinetic simulation results, e.g, from ORB5, and ATEP we effectively construct a hierarchical approach for PSZS evolution. Additionally, we introduce the Dyson-Schrödinger model (DSM) [9] in the hierarchy of transport models, filling the gap between ORB5 and ATEP. A numerical workflow [10] based on the PEANUTS suite of codes is presented to solve DSM.

[1] L. Chen and F. Zonca, Reviews of Modern Physics 88, 015008 (2016).
[2] F. Zonca et al., New Journal of Physics 17, 013052 (2015).
[3] F. Zonca et al., Plasma Phys. Control. Fusion 57, 014024 (2015).
[4] M. V. Falessi and F. Zonca, Physics of Plasmas 26, 022305 (2019).
[5] M. V. Falessi, L. Chen, Z. Qiu, and F. Zonca, New Journal of Physics 25, 123035 (2023).
[6] S. Briguglio et al., Physics of Plasmas 21, 112301 (2014).
[7] A. Bottino et al., Journal of Physics: Conference Series 2397, 012019 (2023).
[8] P. Lauber et al., Nuclear Fusion 64, 096010 (2024).
[9] F. Zonca et al., Journal of Physics: Conference Series 1785, 012005 (2021).
[10] G. Wei et al., Physics of Plasmas 31, 072505 (2024).

Author

matteo Valerio falessi (Center for Nonlinear Plasma Science and C.R. ENEA Frascati, Frascati, Italy)

Co-authors

Fulvio Zonca (ENEA C.R. Frascati) Philipp Lauber (IPP)

Presentation materials

There are no materials yet.