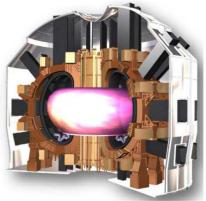
Theory and simulations chapter

nlinear Plasma

ence

M. V. Falessi, F. Zonca, G. Vlad, E. Nardon

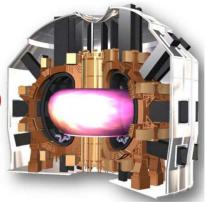
Center for Nonlinear Plasma Science and ENEA C.R. Frascati



- Rationale
- Table of contents
- Summary of Chapter 8
- Status of the writing

Divertor Tokamak Test (DTT) facility

One of the key issues towards demonstration of fusion energy is Power & Particle EXhaust (PPEX)
 Mission for DTT
 Integration of various physics and technology aspects is crucial

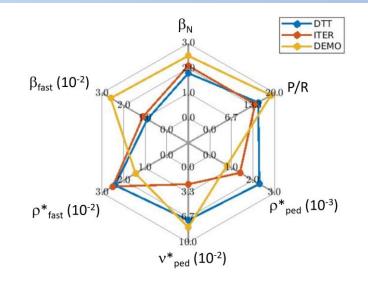

Clear impact on plasma performance and operation

Divertor Tokamak Test (DTT) facility

One of the key issues towards demonstration of fusion energy is Power & Particle EXhaust (PPEX)

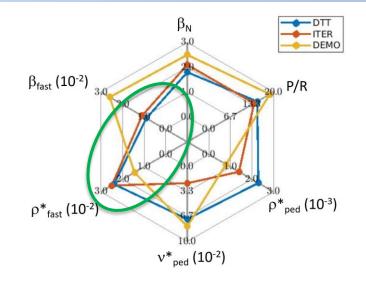
 Mission for DTT
 Integration of various physics and technology aspects is crucial

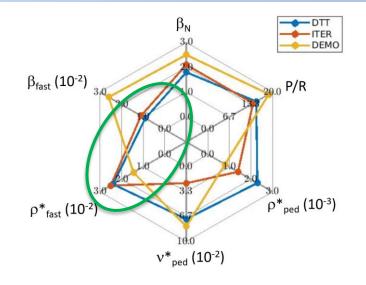
Clear impact on plasma performance and operation


□ Here: focus on physics integration (in general)

Need for reliable predictive capability

Integrated Modeling crucial for turbulent transport


Need for novel approaches and physics understanding: fusion is not a mere engineering and technology problem

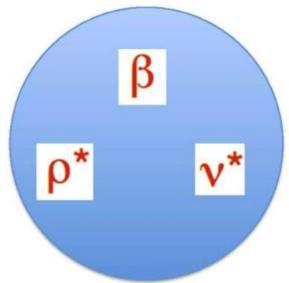

 DTT has been designed to describe the physics of reactor-relevant fusion plasmas;

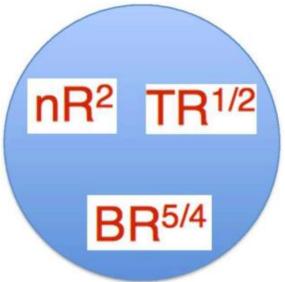
 DTT has been designed to describe the physics of reactor-relevant fusion plasmas;

- DTT has been designed to describe the physics of reactor-relevant fusion plasmas;
- reactor-relevant plasmas are a complex system;
- as a result, it gives rise to challenges in the theoretical description of the physics processes;

- 8.1 Weak similarity scaling & DTT;
- 8.2 Plasma as a complex system: nonlinear equilibria and self organization;
- 8.3 Gyrokinetic transport theory: general approach & reduced models;
- 8.4 Integration of theory, simulation and experiments;
- 8.5 Novel approaches and open problems

What makes DTT unique?


- 8.1 Weak similarity scaling & DTT;
- 8.2 Plasma as a complex system: nonlinear equilibria and self organization;
- 8.3 Gyrokinetic transport theory: general approach & reduced models;
- 8.4 Integration of theory, simulation and experiments;
- 8.5 Novel approaches and open problems


- 8.1 Weak similarity scaling & DTT;
- 8.2 Plasma as a complex system: nonlinear equilibria and self organization;
- 8.3 Gyrokinetic transport theory: general approach & reduced models;
- 8.4 Integration of theory, simulation and experiments;
- 8.5 Novel approaches and open problems

Theoretical challenges in describing the physics of DTT

The operation space of quasi-neutral, collisional, finite-β plasmas

There exist three dimensionless parameters in the governing equations [Kadomtsev 75]

Three engineering (dimensional) parameters, with R left to vary [Lackner 90]

CNPS

- □ Weak Kadomtsev scaling [Pizzuto et al NF2010]:
 - \rightarrow fix $\rho_* R^\epsilon$, β , ν_*
 - \Box Weak scaling of $\rho_* R^\epsilon$
 - □ Cross-scale coupling (micro-meso scales) is preserved;
 - □ Preserve ρ_{*EP}/ρ_* set by T_{EP}/T , given by condition of dominant electron heating

□ Weak Kadomtsev scaling [Pizzuto et al NF2010]:

- \rightarrow fix $\rho_* R^\epsilon$, β , ν_*
 - $\hfill\square$ Weak scaling of $\rho_* R^\epsilon$
 - Cross-scale coupling (micro-meso scales) is preserved;
 - □ Preserve ρ_{*EP}/ρ_* set by T_{EP}/T , given by condition of dominant electron heating

□ Weak Kadomtsev scaling [Pizzuto et al NF2010]:

 \rightarrow fix $\rho_* R^\epsilon$, β , ν_*

 \Box Weak scaling of $\rho_* R^{\epsilon}$

Cross-scale coupling (micro-meso scales) is preserved;

□ Preserve ρ_{*EP}/ρ_* set by T_{EP}/T , given by condition of dominant electron heating

 \Box Fix β and stability

Preserve temporal scale hierarchy: frequency ordering of meso- to macro-scale fluctuations

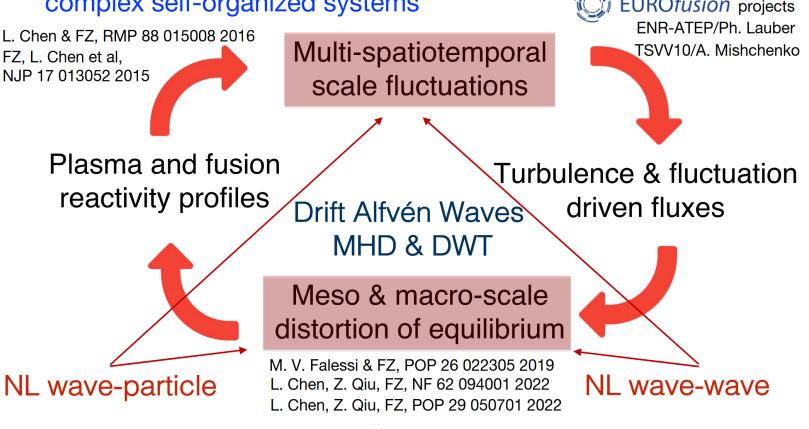
Fix collisionality parameter v_*

Preserve edge physics and PWI (PPEX)

Preserve supra-thermal particle content in the core

From ICPP 2022 FZ&DTT Team

8.2 Plasma as a complex system: nonlinear equilibria and self-organization



□ Integrated simulations → must address burning plasmas as complex self-organized systems

\Box Integrated simulations \rightarrow must address burning plasmas as complex self-organized systems EUROfusion projects **ENR-ATEP/Ph.** Lauber

From ICPP 2022 FZ&DTT Team

8.2 Plasma as a complex system: nonlinear equilibria and self-organization

8.2 Plasma as a complex system: nonlinear equilibria and self-organization

In collisionless burning plasmas

- Power balance is dominated by EP
- Fluctuation induced transport may cause significant deviation from local thermodynamic equilibrium

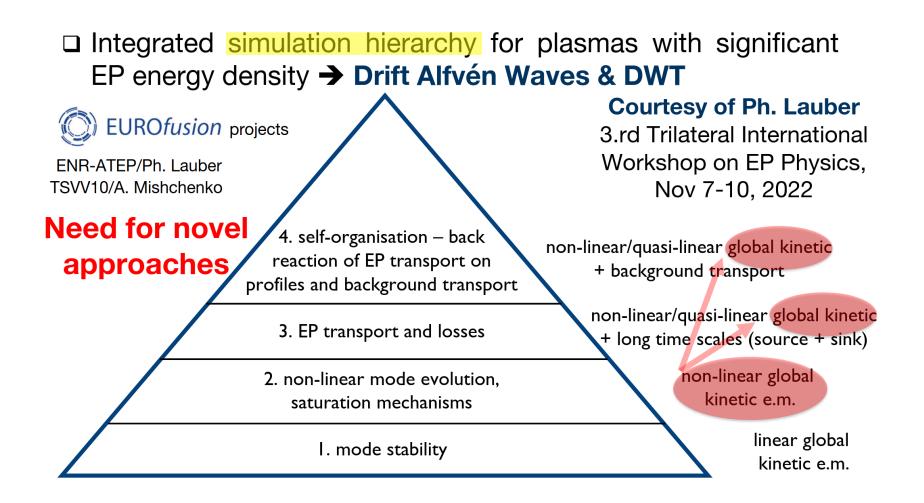
→ importance of phase space transport

EP are mediators of cross-scale couplings (C&Z RMP16)

8.2 Plasma as a complex system: nonlinear equilibria and self-organization

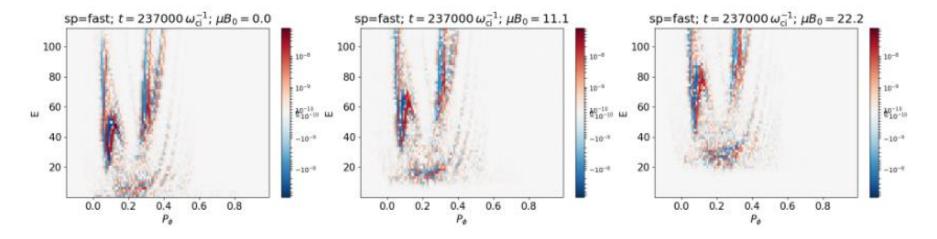
□ In collisionless burning plasmas

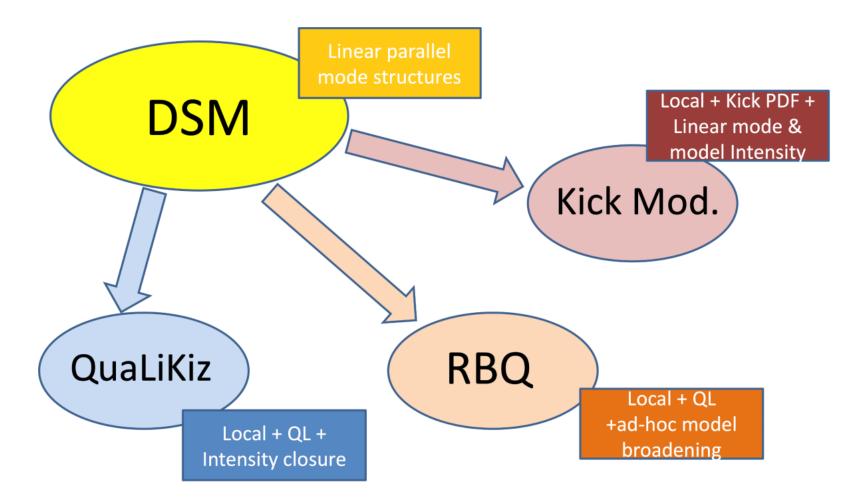
- Power balance is dominated by EP
- Fluctuation induced transport may cause significant deviation from local thermodynamic equilibrium


→ importance of phase space transport

EP are mediators of cross-scale couplings (C&Z RMP16)

Recent progress in two areas of theory and simulation:


- Interaction of Alfvén Eigenmodes (AE) and drift wave turbulence (DWT) (Chen et al. 2021-22)
- ➢ Gyrokinetic theory of phase space transport (Falessi et al. 2019-21-23) → phase space zonal structures (PSZS)

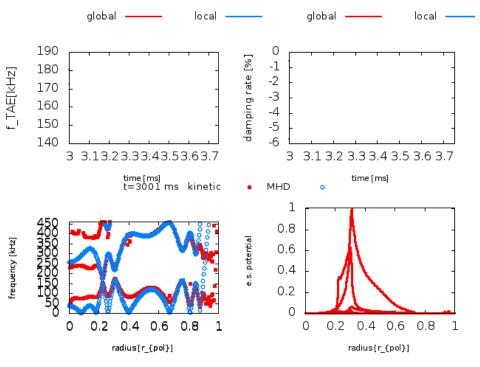

From ICPP 2022 FZ&DTT Team

Courtesy of Thomas Hayward-Schneider

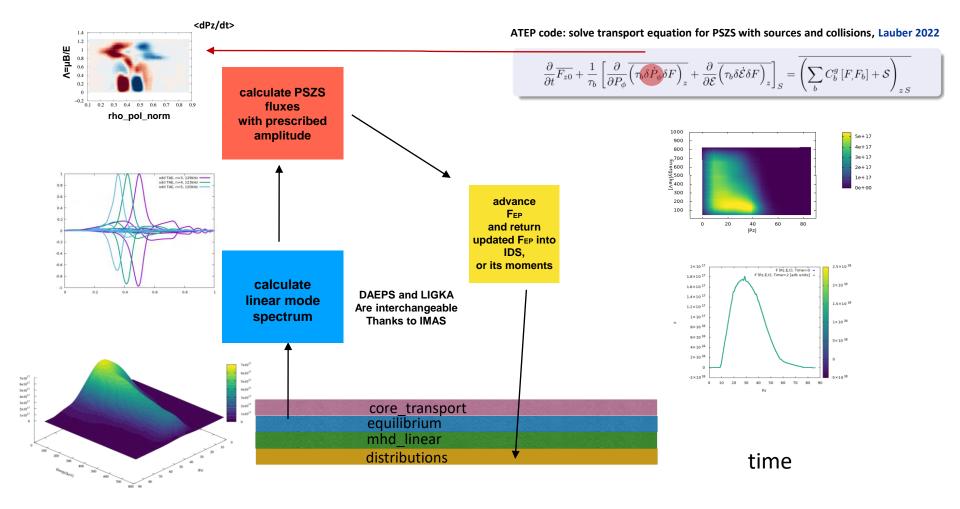
$$\frac{\partial}{\partial t}\overline{F_{z0}} + \frac{1}{\tau_b} \left[\frac{\partial}{\partial P_\phi} \overline{\left(\tau_b \delta \dot{P}_\phi \delta F \right)_z} + \frac{\partial}{\partial \mathcal{E}} \overline{\left(\tau_b \delta \dot{\mathcal{E}} \delta F \right)_z} \right]_S = 0$$

From FZ CNPS-DTT MHD&TH Seminar Dec 2021

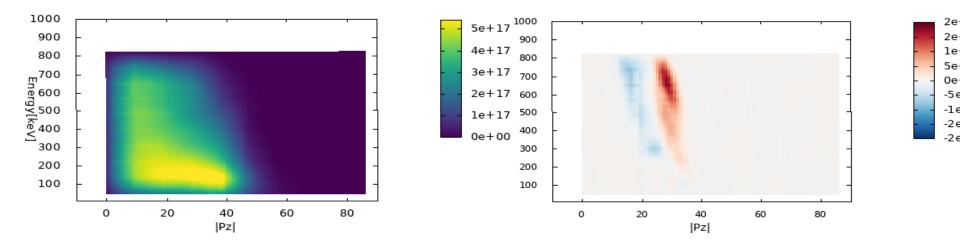
CNPS



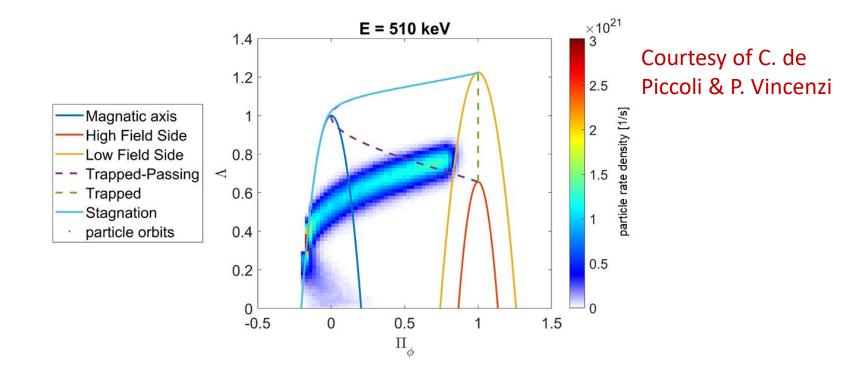
Additional topics:


- improvement of current transport approaches;
- Moment based hybrid/kinetic models;
- need of truly global, electromagnetic, Gyrokinetic analyses;

- Importance of building an infrastructure to verify and validate reduced models on DTT;
- role of IMAS infrastructure;
- Ligka-Hagis EP workflow, synthetic diagnostics;



F (Pz,E,t), Time=2 [arb units]


F(t) - F(t-1), Time=2 [arb units]

CNPS

$$\frac{\partial}{\partial t}\overline{F_{z0}} + \frac{1}{\tau_b} \left[\frac{\partial}{\partial P_\phi} \overline{\left(\tau_b \delta \dot{P}_\phi \delta F \right)_z} + \frac{\partial}{\partial \mathcal{E}} \overline{\left(\tau_b \delta \dot{\mathcal{E}} \delta F \right)_z} \right]_S = 0$$

$$\frac{\partial}{\partial t}\overline{F_{z0}} + \frac{1}{\tau_b} \left[\frac{\partial}{\partial P_\phi} \overline{\left(\tau_b \delta \dot{P}_\phi \delta F \right)_z} + \frac{\partial}{\partial \mathcal{E}} \overline{\left(\tau_b \delta \dot{\mathcal{E}} \delta F \right)_z} \right]_S = 0$$

Some topics:

- nonlinear Gyrokinetics near plasma edge;
- fully nonlinear Gyrokinetic collision operators;
- Hierarchy of reduced models for edge physics (mid term priority);

The writing process is almost completed;

- The writing process is partially done;
- Interactions with Massimo Nocente, Mirko
 Salewski and Philipp Lauber on the integration with experiments (minimum set of diagnostics);

- The writing process is partially done;
- Interactions with Massimo Nocente, Mirko
 Salewski and Philipp Lauber on the integration with experiments (minimum set of diagnostics);
- Interactions with Pietro Vincenzi and Chiara de Piccoli regarding EPs distribution functions;

- The writing process is partially done;
- Interactions with Massimo Nocente, Mirko
 Salewski and Philipp Lauber on the integration with experiments (minimum set of diagnostics);
- Interactions with Pietro Vincenzi and Chiara de Piccoli regarding EPs distribution functions;
- Interactions with Gloria Falchetto and others regarding integrated and edge physics;
- Interactions with Paola regarding the «transport workflow» and IMAS are foreseen;

Thank you for your attention!