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Energetic particles and Alfvén eigenmodes in fusion plasmas

2 Shear Alfvén wave instabilities (SAW) excited by energetic particles (fusion-α) is
an important issue in burning plasmas [Chen RMP16]: complementary- heating
(alpha-channeling) + anomalous EP transport

2 SAW induced EP transport rate depends on SAW amplitude & spectrum (diffu-
sive/convective) ⇐ SAW nonlinear saturation mechanisms

2 Nonlinear mode coupling [Chen PoP13] is an important route for SAW instability
nonlinear saturation in reactors with a/ρh & O(10): multiple-modes co-exist

2 Toroidal Alfvén eigenmode (TAE) extensively studied as paradigm case for non-
linear mode coupling [Hahm&Chen 95, Chen&Zonca&Qiu 95 - ]

2 Reversed shear Alfvén eigenmode (RSAE) related physics expected to be crucial
in reactors: reversed shear configuration + core-localized fusion-α generation
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RSAE characterized by n & O(10) in reactors [Wang PoP18]

2 RSAEs preferentially excited in tokamak center with (weakly) reversed shear

• DTT equilibrium ρh/a ∼ O(10−2)

⇐ single-n simulation with n=4

• dominated by few poloidal harmonics

• dominant drive from precession resonance

2 Multiple-RSAEs co-exist with comparable linear growth rates, k⊥ρh ∼ O(1) and
frequency sensitively depend on n via k∥ ∝ (nqmin −m) (qmin = 1.02)

2 Nonlinear mode coupling expected to play important role in RSAE saturation
[Wei&Qiu 2021-].
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This work: parametric decay of RSAE

2 Parametric decay of RSAE into another RSAE and low frequency Alfvén mode
(LFAM, e.g., BAE)

• rich spectrum of RSAE/kRSAE (linearly stable/unstable): multiple-RSAEs
excited with comparable growth rates + different frequencies

• radially overlapped mode structures

• matching condition easily satisfied due to dense RSAE spectrum

2 Secondary LFAM with ω . O(vi/(qR0)) excited at qmin:

• ω . O(vi/(qR0)): ion heating via Landau damping

• narrow LFAM radial structure δr ∼
√
β/(nq′): core-localized heating

⇒ improved fusion performance
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Theoretical model

2 Field variables δϕ and δψ ≡ ωδA∥/(ck∥) (⇒ δB⊥) used

2 Mode equations derived from nonlinear gyrokinetic vorticity equation
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• derived from ∥-Ampere’s law, QN condition and NL GKE

• LHS: field line bending, inertia, ballooning-interchange

• RHS: Reynolds stress (RS, δv · ∇δv), Maxwell stress (MX, δj× δB/c).

2 ... and quasi-neutrality condition:
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2 Nonadiabatic response δH derived from NL gyrokinetic equation
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General equation for SAW nonlinear coupling

2 Considering two SAWs, Ω1 ≡ Ω1(ω1,k1) and Ω2 ≡ Ω2(ω2,k2) coupling and
generating a third SAW Ω3 ≡ Ω3(ω3,k3): Ω1 +Ω2 → Ω3

2 The first equation of Ω3 can be derived from nonlinear vorticity equation
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2 Substituting (2) into (1)
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2 General equation for SAW nonlinear interaction in torus Ω1 +Ω2 → Ω3:

• SAW DR naturally satisfied: (ω1 + ω2) ≃ (k∥,1 + k∥,2)VA

⇒ Ω3 strongly excited if it is a normal mode⇒ successive & significant spectral
cascading

• not easy to satisfy: limited choice of k∥ due to the periodicity of torus

• counter-part of “Hasegawa-Mima equation” of SAW in torus

- analogous to electron-DW with ω ≃ kyv∗/(1 + k2⊥ρ
2
s)

• generalization to KAW with δE∥ due to FLR effects [Chen EPL11]

⇒ ω/k⊥ cascading of KAW in solar wind? [Chen&Hasegawa 2021 ?]
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Parametric decay of RSAE

2 Considering the spontaneous decay of a pump RSAE Ω0 into RSAE sideband Ω1

and a LFAM ΩB

• Ω0 = Ω1 +ΩB assumed as matching condition

• ωB . O(vi/(qR0)) for effective alpha-channeling ⇒ ωB ≪ ω0, ω1, k∥,B ≃ 0

• LFAM in reversed shear region [Ma PPCF2022]

2 Coupled nonlinear RSAE sideband and LFAM equations:
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2 Parametric dispersion relation for RSAE Ω0 spontaneous decay:
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2 Expanding E1 ≃ i∂ω1E1,R(∂t+γ1) ≃ (2i/ω1)(γ+γ1) and EB∗ ≃ (−2i/ωB)(γ+γB),
with γ1 ≡ −E1,I/∂ω1E1,R ⇒

(γ + γ1)(γ + γB) =
(Λk1

k0,kB∗ )
2

4bBb1
αN |δϕ0|2. (6)

2 Condition for spontaneous decay (γ > 0):

αN > 0 ⇒ scattering direction (7)

(Λk1
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2

4bBb1
αN |δϕ0|2 > γBγ1 ⇒ threshold on δϕ0 (8)

2 Expression of αN in the simplified k∥,BVA ≪ ωB limit:
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• 1− k∥,1k∥,0V
2
A/(ω0ω1): determined by qmin and n0/n1, i.e., below/above

SAW CAP minimum/maximum ⇒ ω/k∥ scattering

• (b0 − b1)(b0 − bB − b1) = ρ4i (k
2
⊥,0 − k2⊥,1)(k⊥,0 · k⊥,1 − k2⊥,1): k⊥ scattering
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2 Condition for maximized cross-section (Λk1
k0,kB∗ )

2αN |δϕ0|2/(4bBb1):

• Λk1
k0,kB∗ ∝ b · k⊥,0 × k⊥,1: maximized as k⊥,0 ⊥ k⊥,1

• inertial layer with kr,0 ≫ kθ,0 ⇒ scattering to large kθ,1 (high-n1) region

⇒ two potential parameter regimes for αN > 0

2 First parameter regime: strong scattering to high-n1 with |k⊥,1 ≫ k⊥,0|
• (b0 − b1)(b0 − bB − b1) > 0 as bB ≃ b1 ≫ b0

• 1− k∥,1k∥,0V
2
A/(ω0ω1) > 0: Ω1 excited above local SAW continuum maxi-

mum with −1/2 < n1qmin −m1 < 0 (sufficient, not necessary)

2 Second regime: scattering to moderate n1

• (b0 − b1)(b0 − bB − b1) < 0 as b0 > b1 while k⊥,1 · k⊥,0 < k2⊥,1

• 1− k∥,1k∥,0V
2
A/(ω0ω1) < 0: Ω1 excited below local SAW continuum mini-

mum with 0 < n1qmin −m1 < 1/2

2 Scattering to high-n1 preferred: nonlinear drive (Λk1
k0,kB∗ )

2/(4bBb1))αN |δϕ0|2∝ b1
for b1 ≫ b0. Upper limit of n1 by γ1(n1): threshold due to Ω1 damping
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2 Threshold on pump RSAE amplitude (b1 ≫ b0)
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rough estimation with γ/ω0 ∼ 10−2, k∥/k⊥ ∼ 10−3, 1− k∥,0k∥,1V
2
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2 LFAM saturation level derived from coupled NL equations as
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2 Ion heating power by LFAM Landau damping:

Pi = 2γBωB
∂EB,R

∂ωB

n0e
2

Ti
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comparable to collisional heating power estimated by ∼ nT/τE!
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Summary

2 A new RSAE decay and core-localized alpha-channeling mechanism proposed and
analyzed

2 Nonlinear decay of RSAE into another RSAE and LFAM analyzed:

• scattering to high-n regime preferred

• threshold on pump RSAE amplitude derived

• LFAM saturation level estimated ⇒ ion heating rate

2 Heating power comparable to collisional heating estimated by ∼ nT/τE

2 Branching ratio of different processes: LFAM generation v.s. ZFS generation v.s.
ion induced scattering?

2 For more details, [Wei, Wang, Chen et al, Nuclear Fusion 62, 126038 (2022)]


