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Low Frequency Continuous Spectrum

• The low frequency Alfvén wave (LFAW) continuous spectra are formed due to the coupling of Alfvén waves and
acoustic waves.

• These Alfvén instabilities with frequencies near the kinetic thermal-ion gap [L.Chen & F.Zonca, 2007NF] can interact
with both thermal and fast particles [F.Zonca et al 2010JPCS].

Figure 1: Schematic illustration of the approximate frequency, radial location and mode
width of observed fast-ion driven modes vs. poloidal flux for a monotonically increasing
q profile. [Original figure from Ref. [Heidbrink et al 2002POP].

• The mode frequencies (ω) are in
the order of ω∗pi (∝ n), which
may be comparable to (ωti ) or
(ωbi );

• For |ω| ∼ |ωti | or |ω| � |ωti |,
the thermal plasma compression
effects play important roles in their
D.R.[F. Zonca2007NF,

Chavdarovski2009PPCF, Chen and

Zonca, 2016RMP].

• Accurate treatment of low frequency spectrum requires kinetic theory considering the resonant interaction with
thermal ions [N.Gorelenkov et al 2009POP].

• The low-frequency Alfvén instabilities include but are not limited to the KBM [Cheng1982, Tang1980], BAE
[Heidbrink1993, Turnbull1993], AITG mode [Zonca1999, Zonca2009] and BAAE [Gorelenkov2007, Gorelenkov2009, Zonca2010];
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LFAM instabilities in DIII-D experiments [Heidbrink et al 2021NFa&b&c]

• These LFAMs are relevant to the recent DIII-D experiments with and without EPs [Heidbrink2021NFa&b&c, Du et al.,
2021PRL]; provides the primary motivation.

Figure 2: Experimental results presented in Ref. [Heidbrink et al 2021NFa]. Time evolution of the ECE spectra, neutral beam power, and
ECH power.

• RSAEs, BAEs and LFMs are excited with NBI; RSAEs and BAEs disappear after turning-off beams, LFMs
persist.

• Both RSAEs and BAEs are excited by energetic ions; while energetic ions are unimportant in LFM
destabilization [W. Heidbrink2021NFa,b].
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LFAM instabilities in DIII-D experiments [Heidbrink et al 2021NFa&b&c]

• Unstable modes occur when qmin approaches a rational value;
• Large Te or its gradient is essential for instabilities;
• The modes in the ascending pattern of higher frequency BAEs and LFMs is separated by approximately frot .

Figure 3: Experimental results presented in Ref. [Heidbrink et al 2021NFb-Fig.8]. (a)
ECE spectra, (b) qmin vs. time for DIII-D discharge #178631. The BAE (diamond) and
LFM (square) symbols represent the values of m/n shown on the spectrogram.

• For LFMs, the mode freq. is low in the
plasma frame, in the range of
diamagnetic frequencies; the maximum
freq. occurs at rational values of qmin ;
exhibit ‘Christmas lights’ and ‘mountain
peaks’ spectral patterns as qmin evolves
[Heidbrink2021NFa];

• For BAEs, they occur at times near
rational values of qmin but the timing of
unstable modes is less precise than for
LFMs [Heidbrink2021NFb];

• Theoretical prediction [L.Chen 2020Private notes, Heidbrink2021NFa] and simulation studies (FAR3D & GTC)
[Varela2018,Choi2021]: LFMs is a low-freq. reactive instability of predominately Alfvénic polarization.

• This work⇒ applying the theoretical framework of the GFLDR to capture the nature of the instabilities and
explain the exp. observations.
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Profiles of DIII-D #178631@1200ms

Figure 4: The radial dependences of the typical scale lengths of thermal and energetic
particle pressure gradients, as well as the magnetic shear and the estimated radial
mode width. Acknowledge W. Heidbrink and the DIII-D team for providing DIII-D
equilibrium data of shot #178631.

• LP = −P/(∂P/∂r): the typical scale
length of pressure gradient;

• The relaxed EP profile provided with
EFIT reconstruction; the classical EP
profile obtained using
TRANSP/NUBEAM;

• ∆m ' 1/|nq”(k‖n0q0R0)|1/2: the
radial width of the mode for weak and/or
vanishing magnetic shear [Zonca2002
POP].

• For LFMs, the instability has nothing to do with EPs [Ma et al 2022PPCF]:

• LPth � ∆m : the moderate equilibrium pressure gradient case,⇒ the usual local limit of the GFLDR for
the mode [Zonca2000 POP];

• For BAEs, the instability is driven by EPs:
• LPE ;relaxed > ∆m : the moderate equilibrium pressure gradient case,⇒ the usual local limit of the mode

dispersion relation;
• LPE ;classical ∼ ∆m : a direct investigation of the global DR. [Zonca2000 POP].
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The local general fishbone-like dispersion relation for LFAMs
• When s = 0 at one isolated singular layer but S ≡ (r/q)[q

′′
]1/2 does not vanish, the local GFLDR [Zonca2002,

Zonca2007, Zonca2014a&b, Chen2017]⇒

iS(Λ2
n − k2

‖n0L2
0)1/2(1/n)1/2

[
k‖n0L0 − i(Λ2

n − k2
‖n0L2

0)1/2
]1/2

= δŴnf + δŴnk (ω), (1)

• Λn(ω): the generalized inertia response to the short radial length-scale “singular” region;
• δŴnf and δŴnk : the “fluid” and “kinetic” potential energy in the “regular” ideal region.
• k‖n0 = (nqmin − m)/qminR0; L0 ' qR0;
• The finite k‖n0L0 plays an important stabilizing role; finite line bending effect at r = r0.

• In low-β (β = 8πP/B2
0 ≈ ε

2) axisymmetric tokamak plasmas, for LFAMs with the inclusion of diamagnetic
effects & kinetic effects of circulating and trapped particle dynamics [Chavdarovski and Zonca 2009]

Λ2
n = Iφ

[
ω2

ω2
A

(
1−

ω∗pi

ω

)
+ Λ2

cir + Λ2
tra

]
, (2)

• S ≡ (iδE‖/k‖)a.c.
/
δφd.c.: a measure for the electrostatic component of the mode polarization.

• a.c. and d.c.: the sinusoidal and nearly constant (flute-like) components of the quantities [L. Chen and F.
Zonca 2017].

• |S| � 1: the typical SAW polarization; |S| ∼ 1: a mixed Alfvénic and acoustic polarization.
• The explicit expressions of Λ2

n and S are given in Refs. [Chavdarovski and Zonca,2009&2014].

δŴnf '
π

4

(S2k‖0q0R0

n
−

3

2
α

2S
∣∣ k‖0q0R0

n

∣∣1/2 +
9

32
α

4
)

(3)

• Assuming anisotropic slowing-down beam ion dist. function with a single pitch angle (λ = µ/ε):

F0E =
B0βE (r)

25
√

2π2mEεb

√
(1− λ0B0)ε−3/2

δ(λ− λ0) (4)

δŴnku '
παE (r)

25/2
(1− λ0B0/2)ω̄

[
2− ω̄ ln

(
ω̄ + 1

ω̄ − 1

)]
; with ω̄ = ω/ωtE (5)
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The global dispersion relation for LFAMs
• Closely following Refs. [F. Zonca et al., 2000POP & 2002POP], the low frequency vorticity equation for the (m, n)

mode reads

(eθ − er ξ) ·

Λ2 − Ω2
A,m

1 +
x2

ΩA,m
+

x4

4Ω2
A,m

 (eθ − er ξ)δφm + Etδφm = 0, (6)

• er and eθ : the radial and poloidal unit vectors;
• x2 = nq0”(r − r0)2, ξ ≡ (i/n1/2)S(∂/∂x);
• ΩA,m ≡ k‖n0q0R0 = (nq0 − m) the normalized parallel wave vector;
• Et : the fluid-like particle and energetic ion contributions;
• δφm : the mth poloidal harmonic of the scalar field perturbation.

• In particular, the normalized pressure gradient of EPs with classical profiles obeys

Figure 5: The radial dependence of the normalized pressure gradient of EPs
with the classical profile. Here, the radial position of qmin is ρ0 = 0.28.

αE (ρ) = C1

(
1−

(ρ− C2)2

C2
3

)
, (7)

with C1 = 0.7099, C2 = 0.3018 and C3 = 0.2944.

The maximum drive of EPs locates at ρ = 0.3018,
which deviates from the radial position of qmin .
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• We have

αE (r) = δaαE0(1−
(r − r0 + δb)2

δ2
c L2

PE ;cl

), (8)

• with δa = C1/αE0, δb = r0 − C2a and δc = C3a/LPE ;cl ; a is the minor radius; αE0 and LPE ;cl are evaluated
at r = r0.

• Introducing the notation x = r − r0 = λz − δb , Eq. (6) is readily cast into the form

∂2

∂z2
δφm −

nλ2

S2

1−
δŴf0 + 2δa

π
δŴku0

εA0

 δφm −
1

4
z2
δφm = 0,

2nλ4δaδŴku0

εA0πS2δ2
c L2

PE ;cl

=
1

4
,

(9)

• with εA0 = Λ2 − Ω2
A,m , δŴf0 = 1

2 D2
S −

3
4α

2DS + 9
64α

4, δŴku0 =
παE0
4
√

2

[
2− ω̄ ln

(
ω̄+1
ω̄−1

)]
, and

DS = S
√

ΩA,m/n.

• Equation (9) yields the following global D.R. for LFAMs excited by EPs,

−n1/2π1/2δcLPE ;clε
1/2
A0

2
√

2Sδ1/2
a δŴ 1/2

ku0

1−
δŴf0 + 2δa

π
δŴku0

εA0

 = 2L + 1, the radial mode number L=0,1,2,3 ... (10)

• The eigenfunctions are obtained from the exponential behavior:

δφm(r) ∝ HL(z)e−z2
⇒ exp

(
−

(r − r0 + δb)2

4λ2

)
, (11)

• HL(z) represents Lth order Hermite polynomials;
• The typical radial width (w) of δφm : w2 = 4λ2.
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Numerical studies of LFAM instabilities

• Referring to the DIII-D #178631 experiment at the time t = 1200 ms [W. Heidbrink et al., 2021NFa], the q-profile has a
reversed shear configuration with qmin = 1.3765 at r0/a = 0.28 and qmin decreases from 1.49 to 1.18 in the
time window 1050 ms < t < 1350 ms.

Figure 6: Radial profiles of temperature (density) of thermal particles and energetic ions, as well as the q, Bt and the rotation frequency
frot of DIII-D shot #178631 at 1200 ms. (Acknowledge W. Heidbrink and the DIII-D team for providing DIII-D equilibrium data of shot
#178631).

The linear properties of LFAMs without EPs by solving the local GFLDR; LPth � ∆m ;

The linear properties of LFAMs with the

{
relaxed EP profiles by solving the local GFLDR LPE ;relaxed > ∆m ,
classical EP profiles by solving the global GFLDR LPE ;classical ∼ ∆m .
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Identification of LFMs observed in DIII-D − the local GFLDR without EPs [Ma, Chen, Zonca

et al., 2022PPCF]

• ηi ≡ Lni/LTi = 0 and δŴnf = 0;

Figure 7: The dependence of the real frequencies, the growth rates and the polarization of modes on Ω∗pi ≡ ω∗pi/ωti with ηi = 0 and

δŴnf = 0.

• The three stable branches: the KBM (ω ∼ ω∗pi ), the BAE (ω/ωti ' q0
√

7/4 + τ ), and the BAAE (a frequency
of half of the BAE; strong damping);

• A mode crossing occurs with increase of ω∗pi ; a switch of mode properties occurs after mode coupling;

• The KBM and BAE: essentially of Alfvénic polarization; BAAE: significant electrostatic component.
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• ηi = 0 and δŴnf is given by Eq. (3); (δŴnf = −0.0041).

Figure 8: The dependence of the real frequencies, the growth rates and the polarization of modes on Ω∗pi ≡ ω∗pi/ωti with ηi = 0 and

δŴnf 6= 0.

• The negative δŴnf changes the topology of the dispersion curves.

• The KBM is unstable in both low (|ω| � ωti ) and high (|ω| & ωti ) frequency regions.

• For |ω| & ωti ,
• (i) the unstable KBM is always accompanied by a damped BAE having an approximately complex

conjugate frequency;
• (ii) the polarizations of the two modes are identical.

essential features of linear reactive instability.

• For ηi = 0 case, there is no coupling between KBM and BAAE.
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• ηi 6= 0 and δŴnf 6= 0 (adopt the local equilibrium parameters of the DIII-D discharge #178361)

Figure 9: The dependence of (a) mode frequencies, (b) growth rates and (c) polarization of modes on Ω∗pi ≡ ω∗pi/ωti with δŴnf 6= 0.

• The KBM freq. always scales with ω∗pi ; unstable in both low (|ω| � |ωti |) and high (|ω| & |ωti |) freq. regions.

• For |ω| � ωti , the KBM freq. first increases and then couples with the BAAE and reduces the BAAE damping
rate.

• For |ω| & ωti , the KBM couples with the strongly damped BAE1 and reduces the BAE1 damping rate; the
corresponding spectral features exhibit the typical of a coupled complex pair;

• BAAE: a mixed Alfvénic and acoustic polarization; both BAE and KBM: Alfvénic polarization.

• For DIII-D case, Ω∗pi = 0.313, fpl ' 0.7 kHz, the LFM observed in DIII-D is a reative-type unstable KBM with
dominantly Alfvénic polarization.

• Remark: The coupling between KBM and BAAE is sensitive to ηi .
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Numerical studies of ‘Christmas light’ observation [Ma, Chen, Zonca et al., 2022PPCF]

Figure 10: LHS: Experimental results presented in Ref. [Heidbrink et al 2020NFa], (a1) ECE spectra from channels and (b1) qmin vs. time for
DIII-D discharges #178631; RHS: The dependence of mode frequencies and growth rates on qmin for the ‘Christmas light’ pattern.

.• The freq. has a weak dependence on qmin ; stays approximately 0;
• The instabilities are peaked at qmin being a rational number (k‖n0 = 0), and quickly quenched by the finite
|k‖n0| field line bending term in Eq. (1).

• The unstable window in qmin is rather narrow; the ∆qmin instability window corresponds to a short time window of
about 15 ms; consistent with exp. observations.
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EP effects on the LFAM stability properties − With the relaxed EP profiles

Figure 11: Dependences of (a) mode frequencies, (b) growth rates and (c) polarization of the modes on Ω∗pi ≡ ω∗pi/ωti for the cases w/o
EPs (dashed curves with markers) and w/ EPs (solid curves with markers).

Figure 12: The Nyquist diagram in the complex D(ω) plane for the cases (a) without and (b) with EP effects.

• In the absence of EPs, the KBM is the only unstable mode; turning on EP effect, both the KBM and BAE are
unstable in the low-frequency regime;

• The frequency of the KBM slightly increases in the presence of EPs; consistent with the exp. observations
[Heidbrink et al 2021NFb].

• In this case, the stability of BAAE is not affected by EPs; consistent with the theoretical prediction in Ref. [Chen and
Zonca 2017POP].
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EP effects on the LFAM stability properties − With the relaxed EP profiles

Figure 13: Dependences of mode frequencies (solid lines with markers) and growth rates (dashed lines with markers) on qmin for KBMs (red
curves) and BAEs (blue curves) for different (m, n).

The numerical analysis based on the GFLDR is in good agreement with the experimental results:
• BAEs occur at times near rational values of qmin but the timing of unstable modes is less precise than for KBMs;
• The low-n BAEs tend to deviate more from rational qmin crossings than higher n modes.
• The modes in the ascending pattern of higher frequency BAEs and lower frequency KBMs is separated by

approximately frot (∼ 7.5 kHz).
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Theoretical understanding based on the GFLDR

1. For BAE with |ω| � |ωti |, Λ2 '
ω2−ω2

BAE
ω2

A
with ω2

BAE = (7/4 + τ)(1 + 1/q2
0 )υ2

i /R2
0 . Letting ω = ωr + iγ with

|γ/ωr | � 1, i.e., assuming weakly unstable modes,

ω
2
r = ω

2
BAE

1 +
ω2

A

ω2
BAE

 n

k‖n0q0R0

(
δŴnf + Re(δŴnk (ωr ))

)2

S2
+ k2
‖n0q2

0 R2
0


 , (12)

γ = Im(δŴnk (ωr ))
ω2

A

ωr

n
(
δŴnf + Re(δŴnk (ωr ))

)
k‖n0q0R0S2

, (13)

• For gap mode BAE, the causality condition gives δŴnf + Re(δŴnk (ωr )) < 0; EPs offer instability drive, i.e.,
Im(δŴnk (ωr )) > 0; the mode instability requires k‖n0q0R0 = nq0 − m < 0, e.g., the unstable (6,4) BAE
occurs at q0 < 6/4 = 1.5, (7,5) BAE occurs at q0 < 7/5 = 1.4, etc., as shown in Fig. 13.

• The duration of different BAEs is influenced by the associated resonances with the EPs, as well as by the value of
qmin .

2. For KBM (LFM) with |ω| � |ωti,bi |, Λ2 ' c0
q2
0√
ε

(ω−ω̄di )(ω−ω∗pi )

ω2
A

, with ω̄di is the average thermal-ion

precession frequency; c0 ' 1.6 due to trapped and barely circulating particles [Rosenbluth1998,Graves2000].

ω =
1

2
(ω̄di + ω∗pi )±

1

2

(ω∗pi − ω̄di )
2 −

4ω2
A
√
ε

q2c0s2

 n
(
δŴnf + Re(δŴnk (ωr ))

)2

k‖n0q0R0S2
− k2
‖n0q2

0 R2
0




1/2

, (14)

and the system is reactively unstable if

|ω∗pi − ω̄di |2

ω2
A

<
4
√
ε

q2c0

 n
(
δŴnf + Re(δŴnk (ωr ))

)2

k‖n0q0R0S2
− k2
‖n0q2

0 R2
0

 . (15)

• For KBM, k‖n0q0R0 → 0 gives the maximum drive for reactive-type instability.
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EP effects on the LFAM stability properties − With the classical EP profiles

Figure 14: LHS: The dependences of the frequencies (blue marker or curve) and growth rates (red marker or curve) of the KBM (triangle
markers) and BAE (line with markers) on the radial mode number L. The parameters are evaluated at r = r0 and (m,n)=(8,6). RHS: The radial
mode structure δφ8,6(r) for the BAE.

• The ground eigenstate with L = 0 is most unstable for BAE and KBM;
• For BAE, ω/ωti = 2.8075 + 0.5279i ; in the plasma frame: (80.6710 +15.1686i) kHz; γ/ω ' 0.19; resonantly

excited by EPs;
• For KBM, ω/ωti = −0.1115 + 0.1972i ; in the plasma frame: (-3.2031 + 5.6658i) kHz; |γ/ω| ' 1.8� 1;

reactive-type instability.

• For L = 0, the radial eigenfunction of BAE - δφm ∝ exp
(
− (|r|−r0+δb )2

4λ2

)
; a Gaussian with a shape similar to

the experimentally observed; with δb = r0 − 0.1932 = −0.014;
• LPE ;classical = 0.1773 . ∆m = 2λ = 0.2107;
• The BAE radially peaks at ρ = (r0 − δb)/a = 0.3018, i.e., the radial position of maximum instability drive from

EPs; see Fig. (5) and Eq. (8).
• It can be expected that the radial mode structure of the KBM should peak at the rational value of qmin where the

instability drive reaches the maximum.
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Continuum spectra for LFAMs: Λ2
n(ω) = k2

‖nq2R2
0 = (nq − m)2 [Zonca et al., 2010JPCS]

Figure 15: The continuum spectra of low-frequency Alfvén branches for n=6, m=8-15. The equilibrium profiles of DIII-D
#178631 at 1200 ms are adopt.

• Λn includes diamagnetic effects & thermal ion compressibility (well passing only) & DAW and DW sideband
coupling effects [F. Zonca et al, 2010JPCS].
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Summary and Discussions

Applying the GFLDR, the essential features of LFAM instabilities observed in the experiments can be well captured.

• In the absence of EPs,
• the LFM observed in DIII-D is a reactive unstable KBM with dominantly Alfvénic polarization;

• Due to diamagnetic and trapped particle effects, the LFM(KBM) can be coupled with the BAAE in the
low-frequency region (|ω| � |ωti |); or with the BAE in the high frequency region (|ω| & |ωti |); resulting
in reactive instability;

• The ascending spectral patterns of LFAMs can be theoretically interpreted by varying qmin ;

• In the presence of EPs,
• Both LFMs and BAEs are unstable; while the BAAEs do not affected by EPs;

• The experimental observations that BAEs occur at times near rational values of qmin but the timing of
unstable modes is less precise than for KBMs have been explained.

Thanks for your attention!
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