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Introduction

Since | have conducted high 3, steady-state mission,
| have thought how KSTAR experiment result could contribute for fusion community

Relatively good points

Pulse-length(Plasma current & Neutral Beam)

Relatively bad points

Low heating power, still needs time for diagnostic upgrade.
Overall magnetic coil controllability since it is superconductor

= KSTAR must demonstrate long-pulse steady-state high 3, operation feasibility.



Introduction

For High 38, steady-state operation, fast particle transport is crucial in KSTAR

N Why?
I (b)
< | Tokamaks ' Limited heating power
2 TER ‘ = low density operation to avoid radiation power
>"‘ 2 —> Fast ion energy fraction is high.
DT Stellarators
Fast particle pressure is crucial for short term
milestone in KSTAR: B ~ 3 for 30s.
ONODT+NB| KSTAR operation regime
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KSTAR data is overlapped at Gorelenkov NF 2014 Figure 45. (b)
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What we have observed (mainly performance improvement) related with
fast-ion modes.

How much we have experimentally achieved high 3, mission.

Remaining issues on long-pulse operation



co-ECCD 2018

High q..i, AE control experiments in 2018 Zgc scan: +30cm > +15¢m (5.0s — 5.55)
AE control reproduced by ECCD heating position even low q95 and beam heating power.
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ECE spectrogram & coherence — it could be Alfvenic (internal) modes

]
High q,,;, AE control experiments in 2018 Comparison with the internal measurements (ECE)

Mean coherence
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Insight from sequence of kinetic equilibrium reconstruction
- g & kinetic profile evolution
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e Kinetic equilibrium reconstruction shows q profile evolution of each phase.
Almost consistent for stable region and dynamic for evolution phase.
( >0.5 is TRANSP constrained and other region is MSE constrained)

« Increment of core kinetic profile is also observed.

e C(lassical fast ion slowing down time is almost consistent among active/mitigated phase.
— Mode is responsible for fast ion transport.



Kick-model propose that

Off-axis NBCD due to Alfvénic activity — main candidate to sustain high q,,
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Beam driven current is bit over-estimated than ad-hoc method at off axis.

-> However, kick model shows more consistent current profile with reconstructed one.

Beam is the main current driver for this shot.
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In 2019
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= 1.9 T similar NB power but different pitch

= Even with different beam combo & EC
heating shows AE mitigation

= Got a better quality MSE data & FIDA
intensity profile
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Safety factor and total pressure profile evolution is a bit different
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= g profile was not so much differed since EC heating
(different toroidal angle as 2018 ).
=» NBCD profile change at off-axis region leads

q-profile variation

= Fast-ion pressure increases as the AEs are mitigated.
Normalized pressure gradient (a) > At
=» Stabilization in the enhanced B
(related to suppression of core TAESs)

= Fast ion pressure enhancement is the main factor of
total pressure improvement
as in FIDA & neutron rate.



NOVA-K reflects measured Alfvén modes
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Active and mitigated modes are distinguished across O line.

Unstable modes are matched with mode number estimated with Mirnov.

Central 7; change is not so significant

= Thermal-ion Landau damping seems to be weak in TAE-mitigation stage, also in Nova-K.
Major damping mechanisms are
radiative, continuum, and Landau, damping. Detail analysis are on-going.
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TAE suppression strategy is adopted to high 3, and Pygin 2019

The same EC vertical heating seems not so successful.

Misaligned EC triggered TAE after 8 s.
The first try at 2019 leaves unsolved question.
= Need a reference with TAE at higher beta.
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In 2020, g-profile broadening has been confirmed at higher beam power
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In 2020, KSTAR has achieved high B & q,,;,, operation
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- With the aid of early shaping (collaboration with ORNL),
High g min scenario is developed.

- Even with clear n = 4 TAE, high B, is achieved.
Kick/NOVA analysis is on-going.



However, excitation of n = 1 tearing modes comes to a big concern at higher beta
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Most of performance drop is from n = 1 tearing modes.
Many tries on active-control of this mode was not so successful.
Database with various n =1 TM islands width are collected.

= Quantitative modeling on fast-ion transports with NTM is planned.



Long Pulse High 3
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scenario Development status, By >3 &t>10s
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With ECH and without ECH shot has been succeded. ECH case shows higher neutron rate and no TAE
Intepretative analysis (EFIT/TRANSP/NOVA/KICK) is on-going.

Nice shot to compare the effect of fast-ion transport with TAE and low frequency modes at highger beta.
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Summary and Future Work

o Fast-ion transport does matters to achieve high 3 milestone in KSTAR.

o TAE mitigation with ECH/ECCD are main strategy.
- High g0 (> 1.5) & gmin, low li (~ 0.8) by mild off-axis ECCD & ECH provided good testbed for

controlling & driving the AEs.
- Co-IP directional ECCD (0.7MW) mitigates AEs successfully in the high q,,, scenarios of KSTAR

- NOVA-K guides that TAE mitigation by EC enhanced radiative and continuum damping

o By ~ 3 stationary operation is achieved
- But still vague MHD is remained, detail analysis would leads us more higher 3, and long-pulse operation

Future work

For higher g,
- Low & high frequency mode stabilization to maximize g, (Control knob: ECH, 3D field)
- Numerical modeling on fast-ion transport and modes.

Address optimum g-profile or g, which has no MHD activity & high gy
- Less fast-ion related modes, fully non-inductive discharges.



Issues on long-pulse operation
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By controlling fueling, external heating, and plasma shaping

Limitations of PFCs temperature and flux consumption

Discharge lasted up to 40 s but degrades performance



