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Introduction

Since I have conducted high βN steady-state mission,
I have thought how KSTAR experiment result could contribute for fusion community

Relatively good points

Pulse-length(Plasma current & Neutral Beam)

Relatively bad points

Low heating power, still needs time for diagnostic upgrade.
Overall magnetic coil controllability since it is superconductor

⇨ KSTAR must demonstrate long-pulse steady-state high βN operation feasibility.



Introduction

For High βN steady-state operation, fast particle transport is crucial in KSTAR

KSTAR data is overlapped at Gorelenkov NF 2014 Figure 45. (b)

KSTAR operation regime

Limited heating power 
⇨ low density operation to avoid radiation power
⇨ Fast ion energy fraction is high.

Fast particle pressure is crucial for short term 
milestone in KSTAR: βN ~ 3 for 30s.

Why?
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What we have observed (mainly performance improvement) related with 
fast-ion modes.
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Remaining issues on long-pulse operation



AE suppression by co-ECCD scan in high qmin (q0 > 1.5) discharge in 2018



ECE spectrogram & coherence → it could be Alfvènic (internal) modes

J. Kim et al., IAEA TM on EP (EPPI) 2019



Insight from sequence of kinetic equilibrium reconstruction
- q & kinetic profile evolution

𝝍𝑵

Safety Factor

active

Intermediate

Mitigated

• Kinetic equilibrium reconstruction shows q profile evolution of each phase.
Almost consistent for stable region and dynamic for evolution phase.
( >0.5 is TRANSP constrained and other region is MSE constrained)

• Increment of core kinetic profile is also observed.
• Classical fast ion slowing down time is almost consistent among active/mitigated phase.
→ Mode is responsible for fast ion transport.

qmin toward core
with JEC

𝝍𝑵

Kinetic profiles [ne - 1019 #m-3 , Te/Ti – keV]

𝝍𝑵

𝜏S,FAST from kinetic profiles



Kick-model propose that 
Off-axis NBCD due to Alfvénic activity → main candidate to sustain high qmin



In 2019, AE mitigation is reproduced in different NB pitch & EC heating

§ 1.9 T similar NB power but different pitch
§ Even with different beam combo & EC 
heating shows AE mitigation

§ Got a better quality MSE data & FIDA 
intensity profile
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Safety factor and total pressure profile evolution is a bit different

§ q profile was not so much differed since EC heating 
(different toroidal angle as 2018 ).
è NBCD profile change at off-axis region leads 
q-profile variation

§ Fast-ion pressure increases as the AEs are mitigated.
Normalized pressure gradient (α) > αcrit
è Stabilization in the enhanced β
(related to suppression of core TAEs)

§ Fast ion pressure enhancement is the main factor of 
total pressure improvement
as in FIDA & neutron rate.

active (5600 ms) mitigated (7800 ms)
intermediate (6400ms)   intermediate(6800 ms)

Off-axis ⇩ as TAE mitigated



n = 1       n = 2        n = 3

NOVA-K reflects measured Alfvén modes
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§ Active and mitigated modes are distinguished across 0 line.
§ Unstable modes are matched with mode number estimated with Mirnov.
§ Central Ti change is not so significant 

à Thermal-ion Landau damping seems to be weak in TAE-mitigation stage, also in Nova-K.
§ Major damping mechanisms are
radiative, continuum, and Landau, damping. Detail analysis are on-going.
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TAE suppression strategy is adopted to high βN and PNB in 2019

q profile from MSE reconstruction
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EC injection Z (cm)
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The same EC vertical heating seems not so successful.
Misaligned EC triggered TAE after 8 s.
The first try at 2019 leaves unsolved question.
⇨ Need a reference with TAE at higher beta.



In 2020, q-profile broadening has been confirmed at higher beam power

Sudden performance drop 
with TAE emergence

n = 2 dominant

n = 2 dominant

Auto-power spectrogram of Raxis-passing interferometer

Mirnov n number spectrogram

500 kA at 1.8 T

~ 95 kHz modes are observed 
at both diagnostics

ITPA EP 2020 (JEX EP-8)

Current Profile [A/cm2]

q



In 2020, KSTAR has achieved high βN & qmin operation

- H98 ~ 1.2, 1.5 T – 1.4 T, 4.0 MW
- With the aid of early shaping (collaboration with ORNL),
High q min scenario is developed.
- Even with clear n = 4 TAE, high βN is achieved.
Kick/NOVA analysis is on-going.

n = 4 TAE

Early shaping

Drop with RMP



However, excitation of n = 1 tearing modes comes to a big concern at higher beta

Most of performance drop is from n = 1 tearing modes.
Many tries on active-control of this mode was not so successful.
Database with various n = 1 TM islands width are collected.
⇨ Quantitative modeling on fast-ion transports with NTM is planned.

n = 1

Core-passing interferometer spectrogram
(#26608)

Phase inversion



Long Pulse High βN scenario Development status, βN > 3 & t > 10 s  

- With the aid of the second off-axis NBI (5.5 MW) and optimal ECH aiming, MHD-free scenario has been developed.
With ECH and without ECH shot has been succeded. ECH case shows higher neutron rate and no TAE

- Intepretative analysis (EFIT/TRANSP/NOVA/KICK) is on-going.
- Nice shot to compare the effect of fast-ion transport with TAE and low frequency modes at highger beta.

(A.U.)

t > 10

1.825 T
ECH

Shot terminated with beam fault

no ECHn = 4 TAE



Summary and Future Work

Future work

For higher 𝜷𝑵
- Low & high frequency mode stabilization to maximize 𝜷𝑵 (Control knob: ECH, 3D field)
- Numerical modeling on fast-ion transport and modes.

Address optimum q-profile or qmin which has no MHD activity & high 𝜷𝑵
- Less fast-ion related modes, fully non-inductive discharges.

o Fast-ion transport does matters to achieve high βNmilestone in KSTAR.

o TAE mitigation with ECH/ECCD are main strategy.
- High q0 (> 1.5) & qmin, low li (~ 0.8) by mild off-axis ECCD & ECH provided good testbed for     
controlling & driving the AEs.
- Co-IP directional ECCD (0.7MW) mitigates AEs successfully in the high qmin scenarios of KSTAR 
- NOVA-K guides that TAE mitigation by EC enhanced radiative and continuum damping 

o βN ~ 3 stationary operation is achieved
- But still vague MHD is remained, detail analysis would leads us more higher βN and long-pulse operation



Issues on long-pulse operation

Commonly observed phenomena when KSTAR increase pulse-length
Long-pulse with βN > 2.4 for > 20 s

• By controlling fueling, external heating, and plasma shaping
• Limitations of PFCs temperature and flux consumption
• Discharge lasted up to 40 s but degrades performance

Y. S. Na


