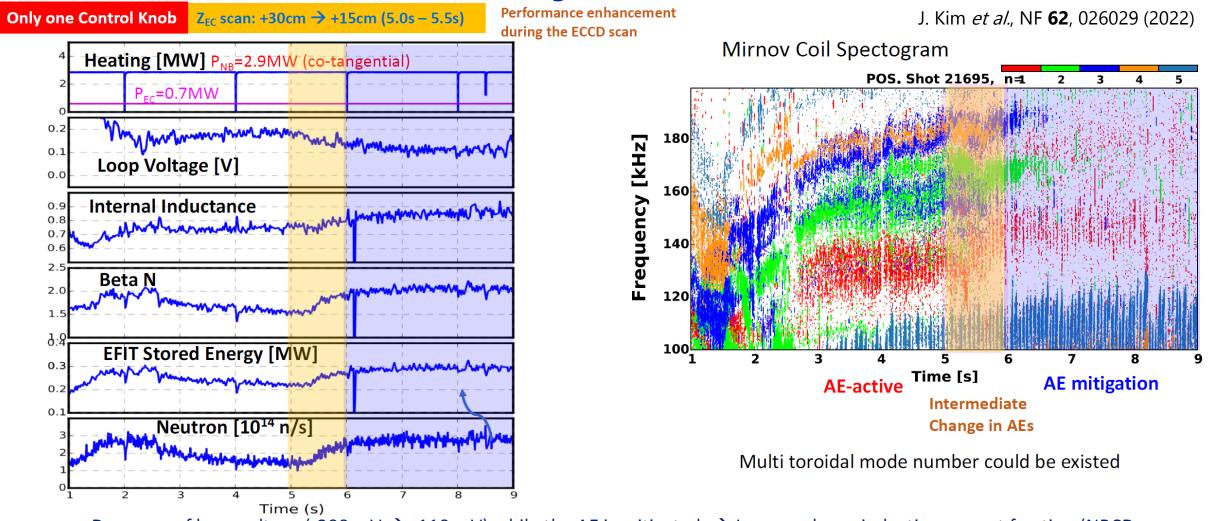
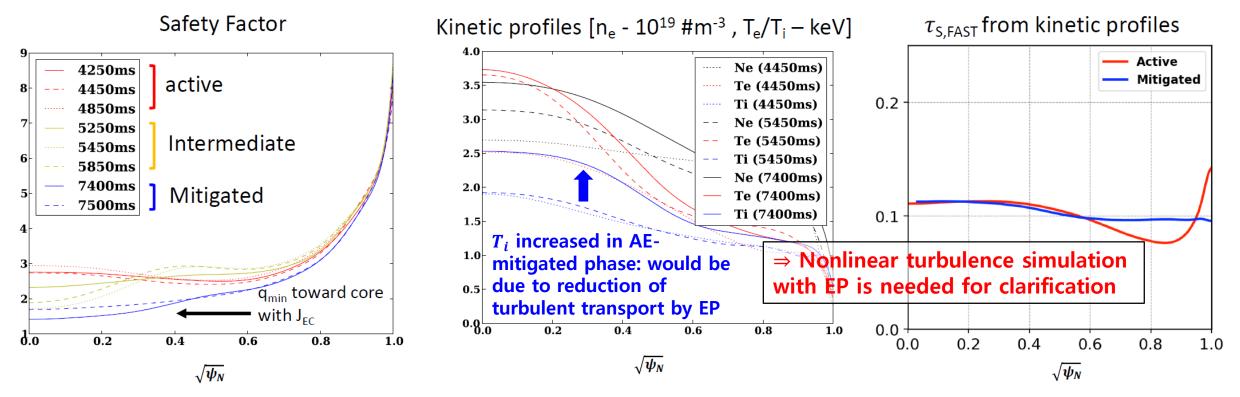
Gyrokinetic study of co-existing Alfvén eigenmode and microturbulence in KSTAR

G.J. Choi¹, S.J. Park¹, T.S. Hahm¹, Y.-S. Na¹, J. Kang², J. Kim², J.M. Kwon², T. Rhee² and KSTAR Team², P. Liu³, X.S. Wei³, Z. Lin³ and GTC Team³


¹ Seoul National University
 ² Korea Institute of Fusion Energy
 ³ University of California, Irvine

Presented at 3rd Trilateral International Workshop on Energetic Particle Physics, November 8, 2022

KFE UCI



AE control by ECCD in KSTAR

- Decrease of loop voltage (-200 mV → -110 mV) while the AE is mitigated. → Increased non-inductive current fraction (NBCD or Bootstrap ↑)
- AE mitigation while applying the ECCD to the proper location → Enhanced fast-ion confinement (mainly co-passing by co-tangential NBI) → Increase of NBCD efficiency → Overall performance increases.

Enhanced KSTAR performance by AE mitigation

- Kinetic equilibrium reconstruction shows q profile evolution of each phase. Almost consistent for stable region and dynamic for evolution phase.
 (>0.5 is TRANSP constrained and other region is MSE constrained)
- Increment of core kinetic profile is also observed.
- Classical fast ion slowing down time is almost consistent among active/mitigated phase.
 → Mode is responsible for fast ion transport.

Complex EP-plasma interactions

- Nonlinear behavior of EP is extremely complex, as it interacts with plasma by mesoscale AEs and microturbulence in various channels (multi-scale problem).
 - $EP \leftrightarrow AE$: EP loss and redistribution by wave-particle interaction with AE [1]
 - $EP \leftrightarrow$ turbulence: turbulence stability change by EP [2] vs turbulent transport of EP [3]
 - AE ↔ turbulence: turbulence regulation of AE-induced EP transport [4] or AE suppresses turbulent plasma transport [5]
 - AE \leftrightarrow plasma: collisionless heating accompanied to wave-wave interaction of AEs [6,7]
 - Turbulence \leftrightarrow plasma: turbulence drive by ∇n , ∇T vs turbulent transport
 - EP \leftrightarrow plasma: collisional energy exchange
- For a <u>comprehensive study</u> of these complex EP-plasma interactions in magnetized fusion plasmas, we need first-principles **gyrokinetic** simulations which can contain all kinetic effects and non-perturbative EP effects for phenomena slower than ion gyrofrequency.
 [1] R.B. White *et al.*, PF 26, 2958 (1983) [2] A. Di Siena *et al.*, NF 58, 054002 (2018) [3] C. Angioni and A.G. Peeters, PoP 15, 052307 [4] P. Liu *et al.*, PRI 128, in press (2022)
 - \Rightarrow <u>Our goal</u>: nonlinear gyrokinetic simulations of KSTAR plasmas considering EP, AEs and turbulence altogether.

[1] R.B. White *et al.*, PF 26, 2958 (1983)
[2] A. Di Siena *et al.*, NF 58, 054002 (2018)
[3] C. Angioni and A.G. Peeters, PoP 15, 052307 (2008)
[4] P. Liu *et al.*, PRL 128, in press (2022)
[5] S. Mazzi, PhD Thesis (2022)
[6] T.S. Hahm and L. Chen, PRL 74, 266 (1995)
[7] Z. Qiu *et al.*, PRL 120, 135001 (2018)

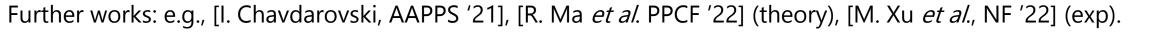
Well-established GTC capability of AE study

- GTC: Global gyrokinetic code for multiple nonlinear kinetic-MHD processes
- TAE: analytic [1], DIII-D [2,3], KSTAR [4], HL-2A [5], JET [6]
- **RSAE**: DIII-D [7,8], DIII-D nonlinear [9]
- BAE: analytic nonlinear [10-12], model e-BAE [13], HL-2A [14]
- **BAAE**: analytic [15], analytic nonlinear [16]
- EPM: analytic [17]

• EGAM: analytic [18]

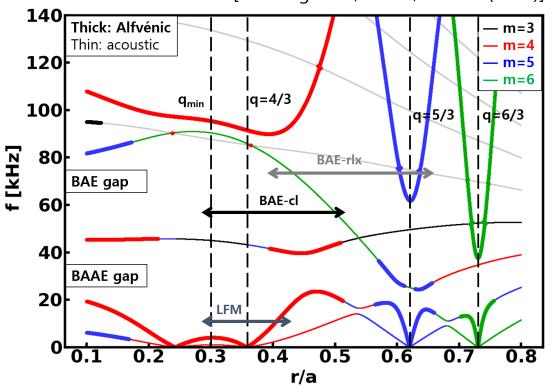
• **LF(A)M**: DIII-D [19,20]

• **BTG**: JET [21]


Inter-codes validation & verification: RSAE (analytic) [22], BAE (analytic) [23], RSAE/TAE (DIII-D) [24], RSAE (DIII-D) [25], Kink (DIII-D) [26]

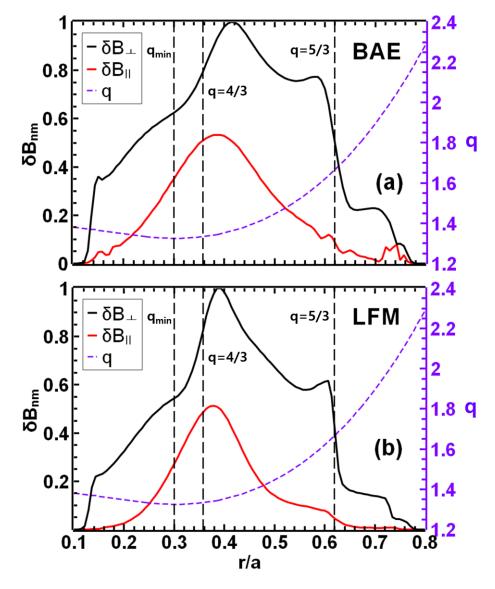
W.L. Zhang *et al.*, PoP **19**, 022507 (2012)
 Z.X. Wang *et al.*, PRL **111**, 145003 (2013)
 Z.X. Wang *et al.*, PoP **22**, 022509 (2015)
 H. Rizvi, C. M. Ryu, and Z. Lin, NF **56**, 112016 (2016)
 H. He *et al.*, NF **58**, 126023 (2018)
 V. Aslanyan *et al.*, NF **59**, 026008 (2019)
 W. Deng *et al.*, NF **52**, 043006 (2012)
 H.Y. Wang *et al.*, PST **23**, 015101 (2021)
 P. Liu *et al.*, PRL **128**, in press (2022)

[10] H.S. Zhang, Z. Lin and I. Holod., PoP **17**, 112505 (2010) [19] G.J. Choi *et al.*, NF **61**, 066007 (2021) [11] H.S. Zhang *et al.*, PoP **20**, 012510 (2013) [20] W.W. Heidbrink *et al.*, NF **61**, 106021 (2021) [12] H.S. Zhang and Z. Lin, PST **15**, 969 (2013) [21] N. Fil *et al.*, PoP **28**, 102511 (2021) [13] J.Y. Cheng *et al.*, PoP **23**, 052504 (2016) [22] W. Deng *et al.*, PoP **17**, 112504 (2010) [23] H.S. Zhang *et al.*, PoP **17**, 112505 (2010) [14] Y. Chen *et al.*, PoP **26**, 102507 (2019) [15] Y. Liu *et al.*, NF **57**, 114001 (2017) [24] D.A. Spong *et al.*, PoP **19**, 082511 (2012) [25] S. Taimourzadeh et al., NF 59, 066006 (2019) [16] J.Y. Cheng *et al.*, PoP **24**, 092516 (2017) [17] C.X. Zhang *et al.*, PoP **20**, 052501 (2013) [26] G. Brochard *et al.*, NF **62**, 036021 (2022) [18] Y. Chen *et al.*, CPL **37**, 095201 (2020)


Linear GTC finds both BAE and LFM in DIII-D

- "BAAE" activity persists after turning-off NBI in DIII-D discharges including #178631: "LFM".
- In #178631, GTC finds unstable n = 3 BAE with both classical and relaxed fast ion profiles.
- Without fast ions, GTC finds unstable LFM inside BAAE gap.
- Electrostatic simulation shows no growing n=3 mode. ⇒ <u>not an electrostatic</u> mode.
- Large $\gamma/\omega \sim 1$ for LFM \Rightarrow strong perpendicular non-resonant drive from energy exchange analysis.
- Only modest change by parallel current ⇒
 LFM: thermal pressure-driven Alfvenic mode.
 [G.J. Choi *et al.*, NF 61, 066007 (2021)]
- Consistent with "LFAM" from analytic theory. [W.W. Heidbrink *et al.*, NF **61**, 016029 (2021)]

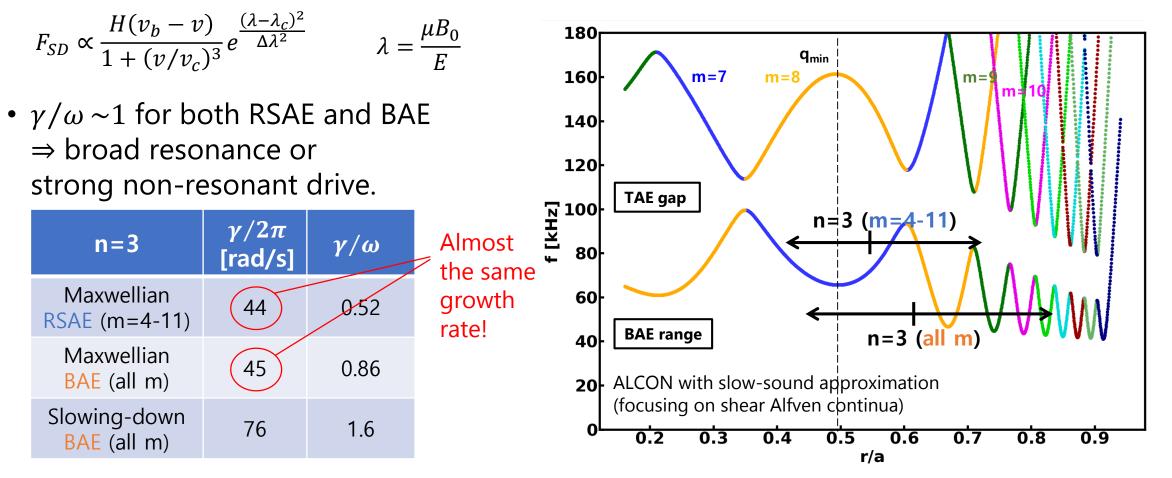
ALCON: ideal MHD continua [W. Deng *et al.*, NF **52**, 043006 (2012)]


6

Parallel magnetic compression is important

• $B_{\parallel}/B_{\perp} = 0$ for shear Alfvén wave and finite for slow modes (compressible perturbation).

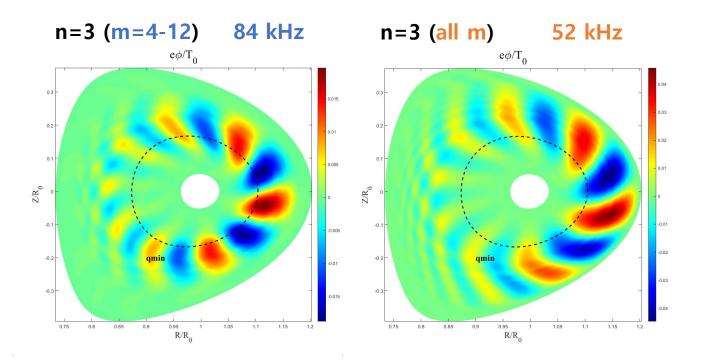
- For both LFM and BAE, $B_{\parallel}/B_{\perp} \sim \mathcal{O}(1)$, much larger than typical ordering $\sim \mathcal{O}(\beta)$.
- Compressible magnetic perturbation increases LFM growth rate by ~100%. (29% up for BAE)
- Compressible magnetic perturbation [G. Dong et al., Phys. Plasmas 24, 081205 (2017)] has been neglected in most of gyrokinetic codes.

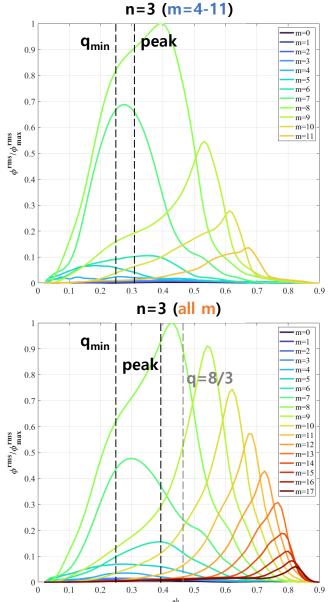


GTC simulation of KSTAR #21695

- We have performed linear GTC simulations of AE in KSTAR #21695 at t=4,450ms which is in the **AE-active phase**.
- Input EFIT equilibrium and measured profiles.
- Reversed magnetic shear configuration with $q_{min} \sim 2.4$.
- GTC model: GK thermal & fast ions and fluid electrons.
- Equilibrium parallel current $J_{\parallel 0}$ included.
- Maxwellian and anisotropic slowing-down equilibrium distributions.
- 200 particles per cell, $N_r \times N_\theta \times N_{\parallel} = 120 \times 300 \times 48$ grids.
- n = 1 6 have been simulated following KSTAR measurements.

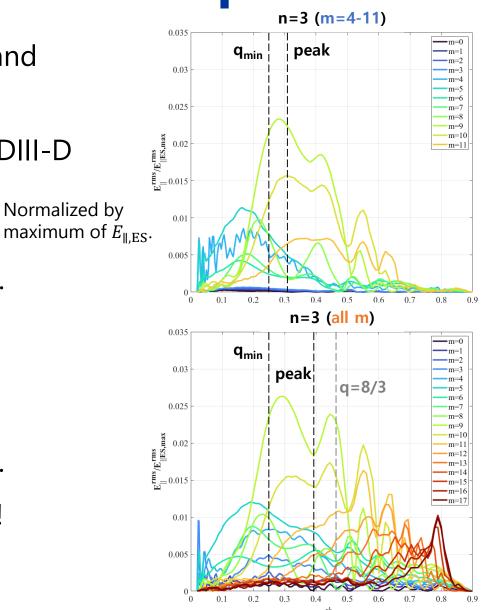
Linear GTC finds RSAE and BAE in KSTAR


- GTC finds the most unstable n = 3 RSAE with m = 4 11 (84 kHz), and n = 3 BAE with all m (52 kHz) in KSTAR #21695.
- It's BAE which is unstable still with anisotropic slowing-down distribution function.


g

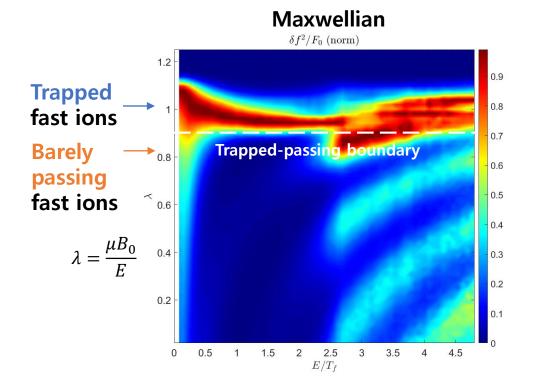
High-m harmonics important for low-n AEs

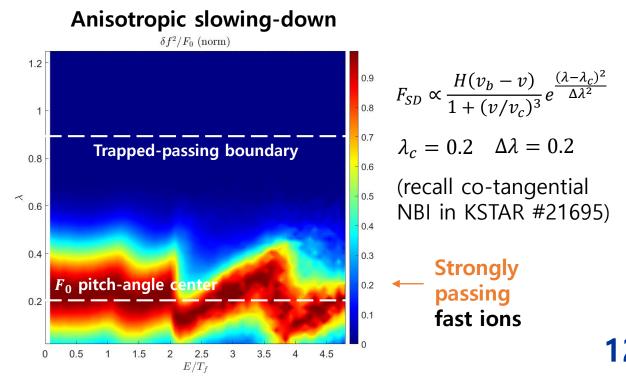
• Controlled simulations of a KSTAR plasma reveal that high-m poloidal harmonics can be important even for lown AEs: **The most unstable mode changes dramatically**.


• Mode twisting by high-m harmonics. \Rightarrow recall $\omega_{*pf} \sim m$

RSAE/BAE deviates from Alfvenic polarization

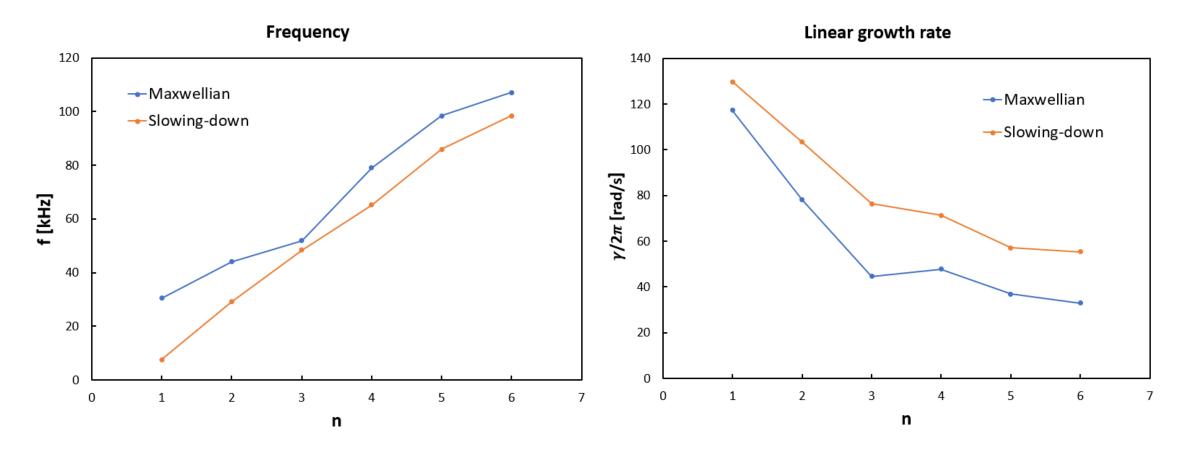
- A polarization factor $E_{\parallel}/E_{\parallel,\text{ES}} = 0$ for Alfvénic and 1 for acoustic, where $E_{\parallel,\text{ES}} = -\nabla_{\parallel}\phi$.
- *E*_{||}/*E*_{||,ES} ~0.025 : higher than ~0.012 for BAE in DIII-D
 [G.J. Choi *et al.*, NF **61**, 066007 (2021)]


 Normalized by
- E_{\parallel} is mostly carried by sidebands ($k_{\parallel} \propto m nq$).
- It is closely related to ion Landau damping, which can play a significant role in AE stability.
- BAE peaks near the local minimum of E_{\parallel} . \rightarrow minimizing ion Landau damping is important.
- RSAE peaks near the maximum of E_{\parallel} (near q_{\min})! \rightarrow minimizing continuum damping is important.



11

Dramatically different resonance depending on *F*₀

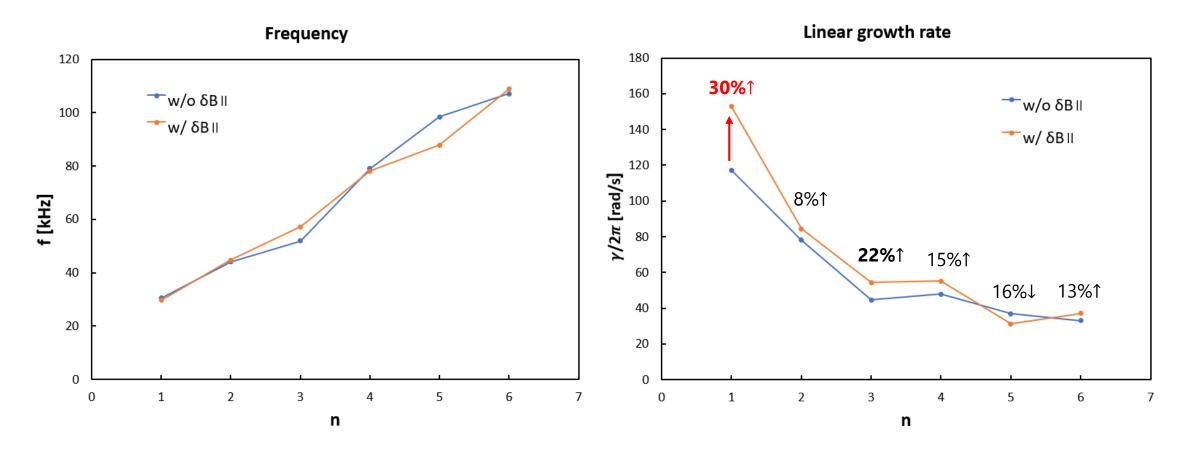

- GTC simulations with Maxwellian and anisotropic slowing-down fast ion distributions F_{f0} yield n = 3 BAE with very similar frequencies ~50 kHz.
- However, 2D velocity space contour plot of fast ion phase space entropy density $\delta f_f^2/F_{f0}$ reveals that the resonance types are totally different in the two cases.
- In both cases, fast ions in a broad energy range contributes to the resonance.

Toroidal mode number *n***-scan**

- GTC finds gradual increase of frequency and decrease of linear growth rate with n.
- The result implies that nonlinear simulations are desired to investigate co-existence of n = 1 5 modes observed in KSTAR #21695.

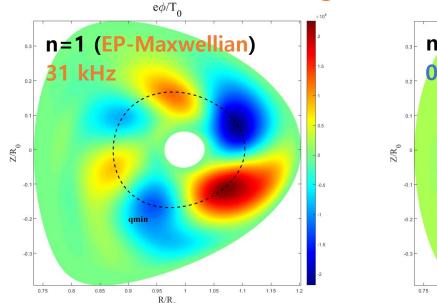
Comparison with KSTAR measurement

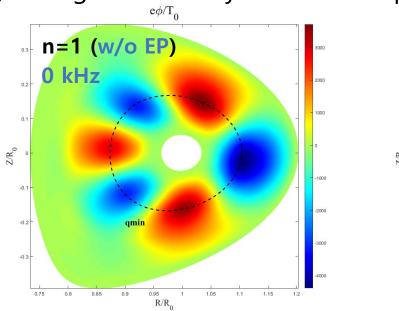
• AE frequencies from linear GTC with Maxwellian fast ion F_0 and finite m-harmonics agree with Mirnov coil measurement in KSTAR #21695 after Doppler shift.

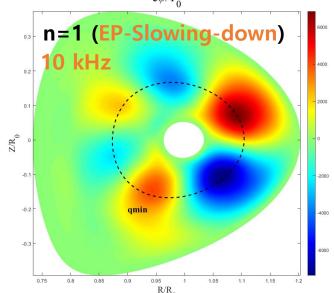

Mirnov Coil Spectogram

POS_Shot 21695, n=1 2 208 • Higher-frequency n = 1 and 2 modes (~ 130 and 180 [kHz] 150 kHz), n = 3 TAE (~180 kHz) has not been found in linear GTC. 160 Frequency 49 140 120 98 104 8 Time [s] **AE-active AE mitigation** Intermediate

Change in AEs

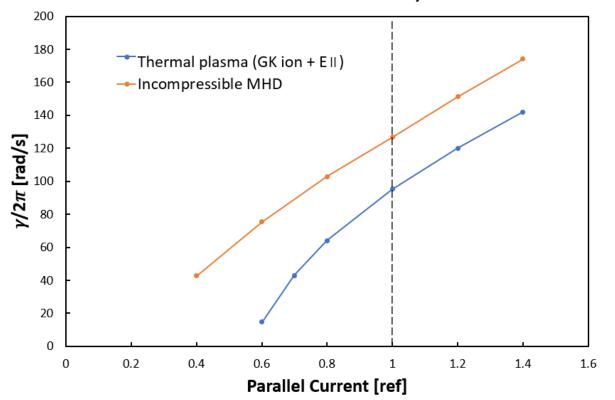

δB_{\parallel} gives a modest change in linear growth rate

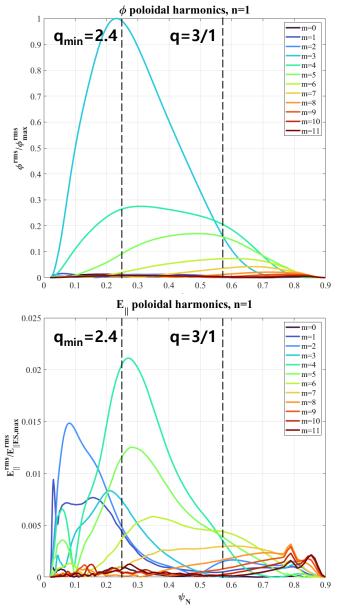

- Overall, modest change of linear dispersion by δB_{\parallel} as expected [G.J. Choi *et al.*, NF '21].
- n = 1 mode shows the most significant δB_{\parallel} -destabilization.



GTC found current-driven 3/1 mode at q_{min}

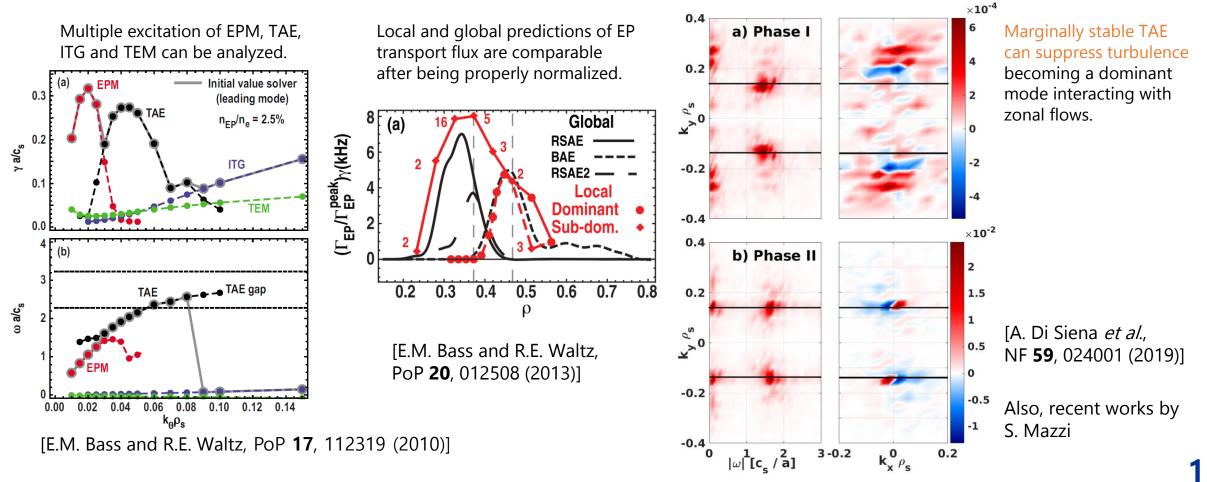
- GTC without fast ions find a robust n = 1 ideal MHD instability peaking at q_{min} .
- The same simulation without equilibrium parallel current $J_{0\parallel}$ didn't find a growing mode. $\Rightarrow 3/1$ current-driven ideal MHD mode !
- Higher growth rate (by 33%) from GTC incompressible MHD simulation: stabilizing role of E_{\parallel} .
- Minor role of δB_{\parallel} w/o EP: almost no change in the linear growth rate. (Recall 30% up w/ EP.)
- EP makes the mode more unstable (by 18%(Max), 37%(Slowing-down)), distorts its shape and makes it more ballooning (i.e., stronger toroidicity-induced coupling), and rotates it.





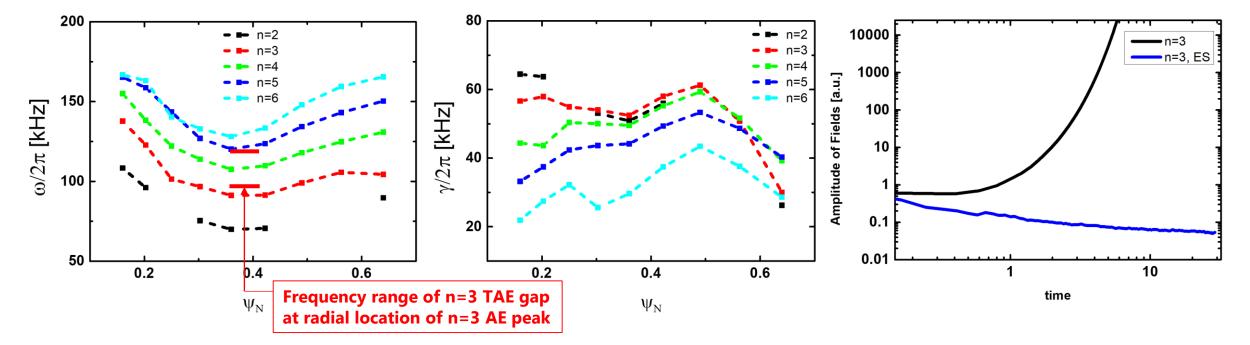
GTC found current-driven 3/1 mode at q_{min}

- Stability strongly depends on parallel current $J_{0\parallel}$.
- With $J_{0\parallel}$ but w/o ∇P (uniform profiles): $\gamma \searrow$ to 48%. \Rightarrow significant contribution from ∇P , though not necessary.
- Further analysis on this ideal 3/1 mode will be interesting. Parallel current scan of n=1 mode w/o EP


Next step: Turbulence simulation

- To achieve our final goal (nonlinear gyrokinetic simulations of AE with microturbulence in KSTAR plasmas), we performed linear *n*-scan of microturbulence.
- Although we miss some higher-frequency AEs in KSTAR #21695 from linear GTC, this doesn't bring a big issue into our plan. Recall that most of low-n AE signals, including multiple n = 3 lines, disappeared together by ECCD.
- Since GTC global nonlinear multi-*n* simulations are extremely heavy and sensitive to numerical settings, preceding GKW [1] local simulations could be helpful for an extensive study of the AE-turbulence nonlinear interactions.

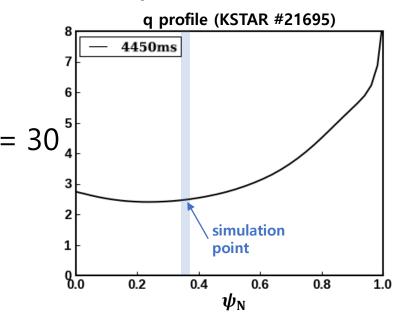
[1] A.G. Peeters *et al.*, CPC **180**, 2650 (2009)


Local GK simulation can be useful for AE study

• While local gyrokinetic simulations miss rich non-local physics in EP-AE interplay, it could capture some important features of EP-AE-turbulence systems.

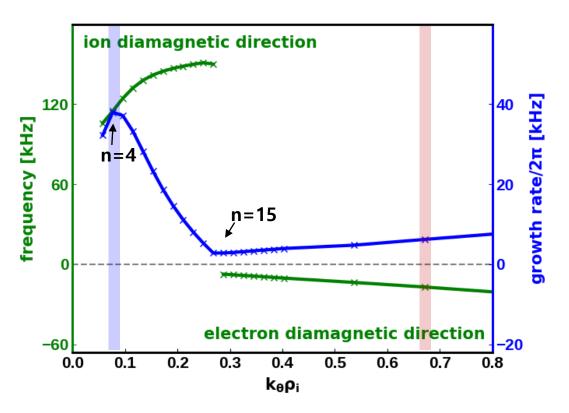
GKW also finds AEs in KSTAR #21695

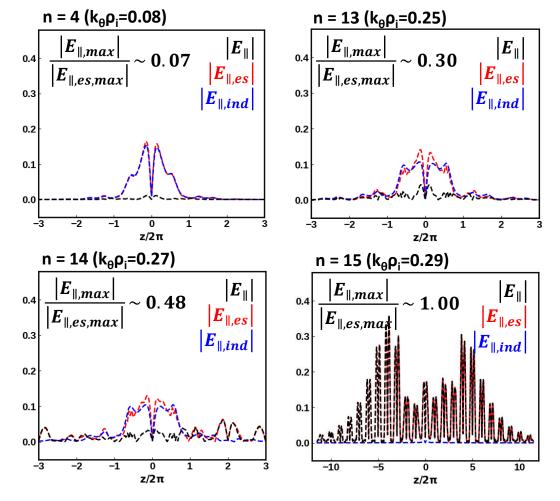
 GKW local simulation finds n = 3 mode having frequency ~ 85 kHz near the radial location of TAE gap, just below the TAE gap frequency. It is similar with the result from the GTC global simulation (RSAE/BAE).


- Frequency difference of GKW from GTC decreases with n (n = 4: +20 kHz, n = 5: +11 kHz).
- Gradual frequency increase and linear growth rate decrease obtained from GKW local simulations are consistent with GTC global simulation results.

Linear GKW *n*-scan of KSTAR #21695

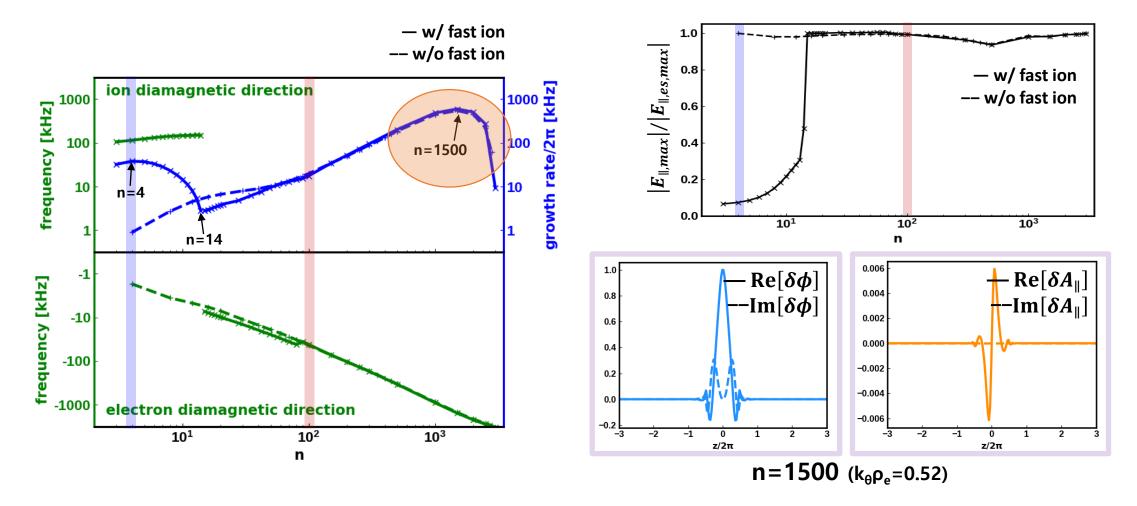
- GKW local simulation of KSTAR #21695 on $\psi_N = 0.36$ (near n=3 AE peak) at t = 4,450 ms (AE-active phase).
- Input EFIT equilibrium and measured profiles:


 $R/L_{n_e} = 0.89, R/L_{T_e} = 8.1, R/L_{T_i} = 2.9, T_e/T_i = 1.2, T_f/T_i = 30^{\circ}_{4}$

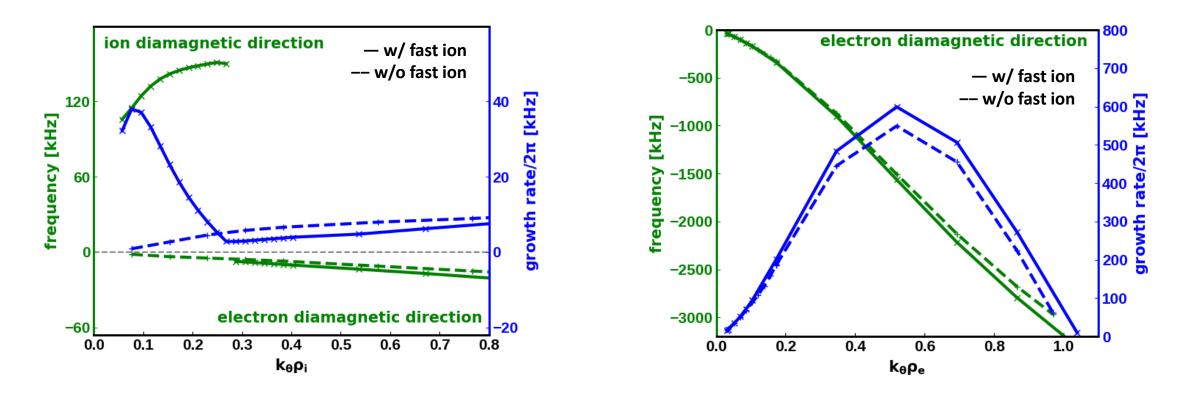

- GK thermal & fast ions and GK electrons
- Electromagnetic fluctuations $\delta A_{\parallel}, \delta B_{\parallel}$ are kept.
- Grids: $N_x \times N_z = 23 \times 64$, $N_{\nu_{\parallel}} \times N_{\mu} = 64 \times 48$.
- n = 3 3000 has been scanned which cover from ion-scale down to electron-scale. ($k_{\theta}\rho_i \approx 1$ at n = 50 and $k_{\theta}\rho_e \approx 1$ at n = 3000)
- Maximum radial box size $L_x \approx 20\rho_i$ at n = 3 (minor radius $a \approx 115\rho_i$).

Ion scale mode transition at n=15

- The direction of mode propagation flips at n = 15, indicating that low-*n* modes are fast ion-driven Alfvenic modes and high-*n* modes are trapped-electron modes (TEMs).
- Polarization shows that low-n < 14 modes are electromagnetic (Alfven wave-like) and highern ≥ 15 modes are electrostatic (drift wave-like).



22


Electron scale mode is the most unstable

- Linear GKW finds the most unstable mode in the electron scale $k_{\theta}\rho_e \sim 1$.
- Frequency, polarization and mode parity shows that this is **ETG mode** (not MTM).

Fast ion effect on linear mode stability

- In ion scale, GKW without fast ions finds low-*n* modes propagating in the electron direction (TEM), with much lower growth rate compared to the case with fast ions.
- Fast ion effects on linear stability of turbulence modes are modest overall: fast ions stabilize TEM, while they destabilize ETG.

Summary

- We have presented results of ongoing study of AE-turbulence interactions in KSTAR.
- We have performed linear gyrokinetic simulations of KSTAR #21695 at t=4,450ms using GTC global code and GKW local code to find and study AEs.
- With a reversed q-profile, linear GTC and GKW find the most unstable RSAE & BAE.
- Different fast ion distribution functions (Maxwellian, anisotropic slowing-down) result in similar BAE frequency, while the resonance type is completely different.
- Both GTC and GKW show gradual increase of frequency ω and decrease of linear growth rate γ with toroidal mode number n.
- GTC reveals that the most unstable KSTAR n = 1 mode is not an EP-driven AE. It is rather a current-driven 3/1 ideal MHD mode peaking at q_{min} .
- Linear GKW scan finds that **ETG mode is the most unstable** dominating over BAE and TEM. Fast ions destabilize the ETG, but the effect is modest.
- Future work: nonlinear GKW & GTC simulations to study AE-ETG interactions.