3rd Trilateral International Workshop on Energetic Particle Physics

Overview of KSTAR experiments on EP and diagnostics status

7th Nov 2022, Zoom Online organized by ENEA, Italy

<u>J. Kim¹</u>, J. Kang¹, T. Rhee¹, K. Kim¹, J. Jo¹, K. Ogawa², M. Isobe², M. Podesta³, M.W. Lee⁴, and collaborators

¹KFE, ²NIFS, ³PPPL, ⁴KAIST

Contents

- Experimental study of EP physics in KSTAR plasmas
- Status of diagnostic set-up to support the EP experiments

1. Experimental topics of KSTAR EP research

- Research topic selection is based on the ITPA EP joint experiments list.
- Fast-ion loss w/ RMP (EP6)
- Alfvén eigenmode control (EP10, EP12)
- Triton burnup

- Poloidal spectrum of *n=1* 3-D field is applied. (intentionally misaligned configuration: Non-equal phasing (*φ*_{UM} ≠ *φ*_{ML}) 3-D configurations that require the presence of the 3rd row. → in support of ITER
- Dephasing is useful to control the fast-ion losses while the ELM is controlled. (J. Kim *et al.*, 15th IAEA TM on EP (2017))
- <u>Reduction of localized fast-ion loss (change in</u> P_φ) by <u>dephasing</u>

 "Intentionally misaligned" (dephasing) RMP (n=1, +90° base) applications using all three rows (Top-Middle-Bottom): have shown the reduction of the localized fast-ion losses, depending on the phasing angle.

- Orbit simulations (NuBDeC*) reveal that the resonant orbitstochastization at the edge by the external 3D field makes the shortcut to the wall.
- Fast-ion loss intensity depends on perturbation amplitude and toroidal location.**
 *T. Rhee *et al.*, PoP **26** 112504 (2019)

T. Rhee *et al.*, NF **62 066028 (2022)

(using the 2-row coils (T-M, M-B), n=1, +90° phasing)

- "Intentionally misaligned" (dephasing) RMP (n=1, +90° base) applications using all three rows (Top-Middle-Bottom): have shown the reduction of the localized fast-ion losses, depending on the phasing angle.
- Extended experiments (three-rows RMP) have shown that dephasing of RMP is also applicable to the <u>ELM-suppression</u> conditions.
- Transient increase in fast-ion loss in the narrow poloidal spectrum window needs to be avoided even in slowly-rotating RMP configurations.
- Plasma response modelling is being done to characterize and quantify the optimal RMP poloidal spectrum.
- Orbit-following modelling is essential to supplement the measurements. (FILD is localized to the fixed poloidal position.)

Feasibility of Alfvén eigenmode control using the EC-wave and the external 3D-field

Alfven eigenmode control mechanism: Competition between the fast-ion drive and the wave-damping $(\gamma_{\text{damping}} > \gamma_{\text{growth}}) \rightarrow$ Increase the damping rate, or decrease the mode drive

Possible Control Tools:	NBI	ECH/ECCD	ICRH	<mark>3D-field</mark>
	Beam-ion profile change. → Change in drive	ECH changes slowing-down time profiles. → Change in drive	Change in fast-ion distribution and drive directly	Orbit stochastization → Change in drive
	Beam-ion damping, Sometimes contribute to thermal-ion Landau damping w/ high core T _i	Both ECH/ECCD are able to tailor the q - profile. \rightarrow Change in Alfven continuum		Possible to modify the Alfven continuum

Demonstration of Alfvén eigenmode control using the ECCD for supporting high performance discharge

Experimental setup:

KFE

NBI heating (fast-ion drive), ECH, Co- & Counter-ECCD scan (q-profile tailoring)

Demonstration of Alfvén eigenmode control using the ECCD for supporting high performance discharge

- co-ECCD scanning found the TAE suppression by altering the central *q*-profile shape, increasing continuum damping in the elevated *q*₀ operation scenario. →
- Enhancement of performance (neutron rate, β_N, T_i, stored energy)

Demonstration of Alfvén eigenmode control using the ECCD for supporting high performance discharge

- Both co- & counter-ECCD applications can mitigate or suppress the TAEs in elevated q₀ scenarios.
- Counter-ECCD application is beneficial to sustain a high q₀ scenario along with TAE mitigation.
 However, performance enhancement is limited.

한국핵융합에너지연구원

J. Kim et al., IAEA FEC (2020)

Demonstration of Alfvén eigenmode control using the ECCD for supporting high performance discharge

21695, TAE-active stage (t ~ 4.45s)

- Fast-ion pressure profiles (TRANSP) calculated and matched to the measured neutron emission rate → Reduced ad-hoc D_{fast} in the TAEmitigation/suppression period
- Increase in central ion temperature in the TAE-suppression period

Demonstration of Alfvén eigenmode control using the ECCD for supporting high performance discharge

Possible cause of the additional losses (e.g. 65 keV beam-ion): Interaction with *n*=3 TAE (modelled by 'Kick' model* w/ ORBIT & NOVA-K)

J. Kim et al., NF 62 026029 (2022) *M. Podesta et al., 2017 PPCF

KSTAR

Alfvén eigenmode control feasibility using the 3-D field TAE control feasibility by scanning 3-D field phase window (<u>K. Kim</u>)

- Suppression of AEs by resonant 3D field phase achieved with threshold 3D field amplitude.
 - A series of discharges show the same plasma response in the AE stability
 - **3D-field phase window for AE suppression** is identified → Largely resonant to the 3D field

Alfvén eigenmode control feasibility using the 3-D field Plasmas kinetically respond to the 3D field and AE stability modification (<u>K. Kim</u>)

- Plasma responses in the AE-suppressed phase are resonant:
 - ✓ Density pump-out, stored energy decrease
 - ✓ 3D phase window for AE suppression is overlapped with ELM mitigation.
 - ✓ 3D field threshold for AE suppression is slightly weaker than the locking threshold → Amplitude window is narrow.

TRANSP analysis indicates:

- ✓ Fast ion stored energy is increased or (at least) sustained in the AE-suppressed phase.
- ✓ Increased fast ion stored energy in the AE-suppressed phase compensates for degradation by resonant plasma response.

K. Kim et al., ITPA EP (2021)

Feasibility of Alfvén eigenmode control using the EC-wave and the external 3D-field

- Control of Alfvén eigenmodes (AE) has been performed by ECH/ECCD, 3D-field applications in KSTAR high β_P & high q₀ operation scenarios.
- Mainly co- I_P directional ECCD mitigates TAEs well. → Performance enhancement (β $\hat{\Gamma}$, neutron $\hat{\Gamma}$, core T_e , T_i $\hat{\Gamma}$), but the on-axis or far off-axis ECCD/ECH is not effective.
- Major damping channel in the case of ECCD application is continuum damping.
- Enhancement of core T_i and plasma pressure (β) is also beneficial to suppress the TAEs.
- Suppression of AEs by resonant 3D field phase achieved with the threshold 3-D field amplitude and the proper phase.
- Plasma responses in the AE-suppressed phase are resonant.

Triton burnup study

Demonstration of alpha-particle confinement in current D-D fusion devices

- Two branches in D-D fusion reaction d + d → ₃He (0.82 MeV) + n (2.45 MeV) 50% → t (1.0 MeV) + p (3.0 MeV) 50%
- Triton burnup
 - d + t → ₄He (3.5 MeV) + n (14.1 MeV)

Triton burnup ratio (TBR) = $\frac{Y_{n-dt}}{Y_{n-dd}}$

- Due to the large width of the fusion-born triton, high I_P (i.e. mega-ampere) discharge w/ P_{NB} > 4 MW is preferred.
- Max. TBR is ~ 0.5% for I_P ~ 0.8 MA.
- At higher I_P, TBR tends to decrease due to low-f MHD activities.

Plasma Current (MA)	1 MeV triton prompt loss fraction (%)		
0.4	86.8		
0.6	57.2		
0.83	42.5		
1.0	26.9		

Triton burn-up ratio increases as plasma current increases. (*orbit-squeezing*)

Triton burnup study

Triton burnup

KOREA INSTITUTE OF FUSION ENERGY

higher I_P.

KFE

Demonstration of alpha-particle confinement in current D-D fusion devices

Triton burnup is influenced by MHD activities.

$I_{\rm P}$ = 0.8 MA discharge

KSTAR

Triton burnup study Demonstration of alpha-particle confinement in current D-D fusion devices

1 MeV triton confinement under the TAE control experiment

Triton burnup simulation for data analyses
 Orbit calculation: LORBIT
 Burn-up calculation based on the classical theory

 $\Delta N = TBR_{classical_cal.} - TBR_{measured}$

Triton burnup study Summary

- Triton burnup experiment has been performed to demonstrate the dynamics of the fusion-born charged particles (i.e. α–particle) in the medium-size fusion devices.
- Reference discharge for this experiment is produced from the stable operation of mega-ampere discharges. (avoiding loss of fast-triton due to large orbitwidth)
- Triton burnup ratio increases as I_P and slowing-down time increase.
- Low-n core MHD activities (i.e. sawtooth crash, tearing mode) degrade the fast-triton confinement.

2. EP diagnostics on KSTAR

- Fast-ion loss detector
- Fast-ion charge-exchange spectroscopy
- Neutron diagnsotics

Fast Ion Loss Detector Hardware set-up

Fast Ion Loss Detector Measurement examples

FILD CCD camera (200 fps): Phase-space (scintillator map) of lost fast-ions in the 3-D field ELM control experiments

FILD PMT (2 MS/s): Fast measurement of transient fast-ion losses associated with the beam-ion-driven EPMs

Bursts of fast-ion loss signal (FILD PMT)

Fast Ion Loss Detector near-term Plan

Re-calculation of fast-ion load on the N-port FILD-head

 Weaker fast-ion loss intensity at the N-port → Recheck the suitability of the current FILD location through full-orbit simulations

Reversed B_T

- Fast-ion loss in the advanced operation scenario with reversed $\ensuremath{\mathsf{B}_{\mathsf{T}}}$ direction
- Optimization of FILD-head orientation and shape
- Upgrade of measurement system
 - Check the camera optics
 - DAQ upgrade (2MS/s/ch), PMT electronics w/ new pre-amplifiers

24/33

FIDA (Fast Ion D_α) **Spectroscopy** Layout, Specification

KFE

• Specification:

- FIDA01 (16 ch)
 - Blue-shifted FIDA emissions of NB1A source
- FIDA02 (10 ch)
 - Red-shifted FIDA emissions of NB2A source
- Radial resolution : ~ 2 cm (FIDA01) / ~5 cm (FIDA02)
- Frame rate: 100 Hz (typ.)
- Exposure time: ~2 ms (typ.)

FIDA (Fast Ion D_α) **Spectroscopy** Upgrade in 2021-2022 (SCT spectrograph, Filtered ultra-fast FIDA)

Schematic of Schmidt-Czerny-Turner (SCT) Spectrograph

KSTAR

26/33

J.P. McClure et al., PISCES (Photonic Innovations and Solutions for Complex Environments and Systems) II; 91980C (2014)

Almost no aberration on the image plane

FIDA (Fast Ion D_α) **Spectroscopy** *Measurement examples (FIDASIM calculation, FIDA intensity profile)*

Measured Spectra (neutral-beam subtracted)

FIDA (Fast Ion D_α) **Spectroscopy** *near-term plan*

- Oblique-view FIDA to support <u>fast-ion</u> <u>velocity-space tomography</u>
 - Oblique-view to NB1 (blue-shift), Preparation for 2023 campaign
 - Adopting the *fast-ion phase-space visualization* without modelling, combined with the tangential FIDA views
 - Key challenge: how to install the front-optics inside the small volume of the passive-plate structure → Miniaturization!
- Consideration of passive FIDA array (free of beam-blip?)

FIDA weight function example (E = 50 - 70 keV)

Additional oblique-views: Extended phase-space coverage

Scintillator-based Neutron Diagnostics Organic scintillator (NE213, Stilbene) Detector

- Scintillator (NE213, Stilbene)
 - To measure the D-D fusion neutron (2.45 MeV) rate

Pulse signal discrimination

Effective pulse counts \rightarrow neutron rate

J. Jo *et al.*, RSI **89**, 01118 (2018) K. Ogawa *et al.*, RSI **89**, 101101 (2018) J. Jo *et al.*, RSI **87**, 11D828 (2016)

Neutron detector

Scintillator-based Neutron Diagnostics Scintillating-Fiber Detector for measuring D-T neutrons

- Scintillating fiber (a.k.a. Sci-Fi) detectors for 14 MeV D-T neutron measurements (many fibers inside the Aluminium mats)
- **Operation principle:** high pulse-height for measuring axially incident D-T neutrons
- Pulse height: n_{DT} discrimination
- Application to the triton (fusion-born) burnup study

Small size

 $\phi = 1 \text{ mm}, 91 \text{ fibers}$

 ϕ = 1 mm, 456 fibers

Mid. size

2-inch Φ

Large size

 ϕ = 1 mm, 5156 fibers

NAS (Neutron Activation System) ITER Prototype

- ITER prototype NAS diagnostic system has been used at KSTAR.
- Fusion-neutron emission rate has been measured quantitatively.
 - ✓ 2.45 MeV D-D neutron: ~10¹⁴ n/s
 - ✓ 14.1 MeV D-T neutron: ~10¹¹ n/s

iter

KFE

NAS database is being constructed to verify neutron budget of KSTAR plasmas.

Application of Neutron Diagnostics Measurement examples (Comparison with TRANSP calculations & Triton burnup study)

Quantitative neutron rate measurements combined with the NAS diagnostic

 Stilbene detector signal → calibrated with the NAS measurements and database → Convert to the quantitative value → Comparison with TRANSP calculations Triton burnup measurement by the Scintillating-Fiber (Sci-Fi) detector

$$d + \underbrace{t}_{2} \rightarrow \frac{4}{2}He(3.5 \text{ MeV}) + \underbrace{n(14.1 \text{ MeV})}_{\text{From d-d fusion }(E_{\text{birth}} = 1 \text{ MeV})}$$

Background plasma

$$TBR = rac{Y_{n-dt}}{Y_{n-dd}}$$
 (ratio between D-D & D-T neutron rates)

- Time-dependent triton burn-up ratio (TBR) measurements in high I_P experiments
- TBR in KSTAR ~ 0.5%

Summary

EP experiments on KSTAR

Fast-ion loss associated with the 3-D field applications

De-phasing RMP is able to reduce the fast-ion loss with approaching to the ELM suppression states.

Alfvén eigenmode control test

ECCD and 3-D field applications stabilize the TAEs with keeping the performance high.

Triton burnup study

Fusion-born triton burnup ratio has been measured (~ 0.5%) in KSTAR deuterium higher-performance plasmas.

EP diagnostics on KSTAR

Fast-ion loss detector

Scintillator-based detector system, the ex-vessel telescopic optics and the wound optical-fiber guide

Fast-ion D_α spectroscopy

The array of fast-ion charge-exchange doppler spectroscopy measures fast-ion density profiles. Eventually, will be used for the fast-ion velocity-space (or phase-space) tomography.

Neutron diagnostics

Scintillator-based PMT detectors, Sci-Fi detector for measuring D-T neutrons, Neutron activation system (NAS) for the quantitative neutron budget in KSTAR

Thank you! KSTAR experiment website: https://kstar.kfe.re.kr

