

Task:DIV-IDTT.S.07-T005-D001-D002 Progresses on divertor coils

A.Castaldo³, E. Acampora², R. Ambrosino^{1,2},

1. DTT S.c.a.r.l. 2. CREATE /University of Naples Federico II 3. ENEA

WPDIV-DTT Midterm meeting 23th June 2022

Divertor coils

• Currently, two possible options in terms of numbers, of positioning and dimensioning of divertor coils are under analysis;

The limits adopted for currents and voltages on divertor coils are 5kA and 500V respectively

IVC4

2.835

IVC3

2.256

-1.671

8

-1.025

16

Disruption analysis on divertor coils

• For both options proposed, a disruption analysis has been conducted in order to evaluate the addition in series of additional inductances on divertor coils to limit the current peak to a maximum value of 10 kA during disruptive events;

3 divertor coils option

 $L_{IVC1,add} = 2,00 mH$ $L_{IVC2,add} = 1,50 mH$

 $L_{IVC3,add} = 2,55 mH$

4 divertor coils option

 $L_{IVC1,add} = 3,80 mH$

 $L_{IVC2,add} = 1,55 mH$

 $L_{IVC3,add}=2,80~mH$

 $L_{IVC4,add} = 10,90 \, mH$

Sweeping control

The sweeping control is a power exhaust strategy whose aim is to enlarge the divertor area affected by the plasma SOL imposing a periodic movement of the plasma divertor legs at a desired frequency with an almost fixed plasma shape.

Shape descriptors

Shape Gaps: [20 30 66 48 55]

Plasma leg descriptors

Sweeping Gaps: [67 68]

Sweeping control: Results for 3 coils solution

- Note that the sweeping is evaluated along the plate. Considering the poloidal angles on the inner and outer target (35° and 18° respectively), the absolute sweeping of the legs is comparable;
- Good decoupling between sweeping gaps and shape gaps in the frequency range [1-10] Hz;
- According to voltage limit a sweeping amplitude of ±3 cm at 7 Hz can ben imposed on the outer target (±2 cm on inner target);

Sweeping control: Results for 4 coils solution (no IVC4 usage)

- Fair decoupling between sweeping gaps and shape gaps in the frequency range [1 – 10] Hz;
- Different movement of strike points on inner and outer plates;
- According to voltage limit a sweeping amplitude of ±3 cm at 9 Hz can ben imposed on external target (±1 cm on inner target);

Sweeping control: Results for 4 coils solution

- Fair decoupling between sweeping gaps and shape gaps in the frequency range [1 – 10] Hz;
- Different movement of strike points on inner and outer plates;
- According to voltage limit a sweeping amplitude of ±3 cm at 9 Hz can ben imposed on external target (±1 cm on inner target);

Conclusions

- According to the results presented, the divertor coils option with IVC1 over the divertor rail offers poor sweeping performance;
- On the contrary, the divertor coils option IVC1 under the divertor rail is the most performing and promising solution in terms of strike points sweeping;
- However, the latter solution is characterized by the assembly problem of IVC1 since its
 position should be under the divertor rail;
- A possible alternative solution would be to consider IVC1 over the divertor rail with the insertion of an additional divertor coil in the bottom of the divertor;

