

AWP 2022

Title: Coordination of In-Vessel Coils Design and Analysis work 2022 IMS task ID: DIV-IDTT.P.1-T019

Title: In-vessel coils Design and Analysis 2022 IMS task ID: DIV-IDTT.S.07-T005

DIV-IDTT.P.1-T019 Del. Owners: Mauro Dalla Palma, Tommaso Bolzonella, Giuseppe Ramogida DIV-IDTT.S.07-T005 Del. Owners: Roberto Ambrosino, Tommaso Bolzonella

uscia

DTT Consortium (DTT S.C.a r.l. Via E. Fermi 45 I-00044 Frascati (Roma) Italy)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

- Coordination of In-Vessel Coils Design and Analysis work 2022: deliverables and allocated resources
- In-Vessel Coils Design and Analysis work 2022: deliverables and allocated resources
- Activities and synergies among the systems within In-Vessel Coils:
 - stabilizing plates (STP)
 - in-vessel coils axial symmetric (ICA)
 - in-vessel coils not axial symmetric (ICN)
- Locations of joints in ITER
- Requirements of coil cable and joint
- Main characteristics of coil cable and joint

DIV-IDTT.P.1-T019 deliverables and allocated resources:

ID	Title	Start Date	End Date	RU	Del. Owner	AWP2022
						PM 50%
						standard
DIV-IDTT.P.1-T019 - D001	Coordination of the Design and Analysis of In-vessel Coils 2022 – Lead Engineer	01-Jan-22	31-Dec-22	ENEA	Mauro Dalla Palma	2.000
DIV-IDTT.P.1-T019 - D002	Coordination of the Design and Analysis of In-vessel Coils 2022 – Deputy Engineer	01-Jan-22	31-Dec-22	ENEA	Tommaso Bolzonella	2.000
DIV-IDTT.P.1-T019 - D003	Coordination of the Design and Analysis of In-vessel Coils 2022 – Deputy Engineer	01-Jan-22	31-Dec-22	ENEA	Giuseppe Ramogida	2.000
				•	TOTAL:	6.000

DIV-IDTT.S.07-T005 deliverables and allocated resources:

ID	Title	Start Date	End Date	RU	Del. Owner	AWP2022
						PM 50% standard
- D001	Design, analysis, and integration of stabilizing plates	01-Jan-22	31-Dec-22	ENEA	Roberto Ambrosino	7.000
- D002	Design, analysis, and integration of axial symmetric in-vessel coils	01-Jan-22	31-Dec-22	ENEA	Roberto Ambrosino	15.000
- D003	Design, analysis, and integration of not-axial symmetric in-vessel coils	01-Jan-22	31-Dec-22	ENEA	Tommaso Bolzonella	15.000
					TOTAL	37.000

Working Team:

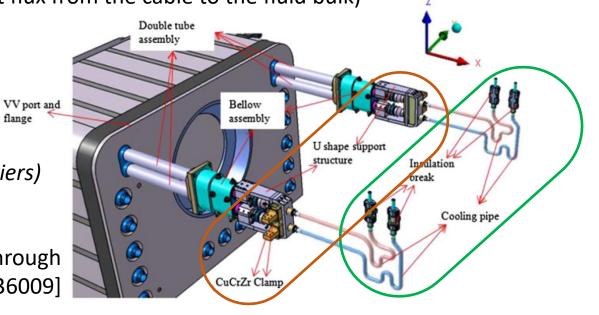
Institution	Activity		
Consorzio RFX	Conceptual design		
Create M&C	Electromagnetic and control specification including disruption analyses		
	Design and position of the coils including thermal analysis of the in-vessel coils		
PoliTo	Joining and testing of multi-material components		
Uni Tuscia	Mechanical design & electromagnetic loads specification		
Uni Tor Vergata	Static thermo-structural analyses on in-vessel coils under EM loads		
	Engineering design of the in-vessel coil attachments to the vacuum vessel		
	Engineering design of the in-vessel coil feeders		



• Activities:

- A. Revision of System and interface requirements
- B. Electromagnetic (EM) and control specification including disruption analyses (revision of plasma equilibrium)
- C. Design and position of the in-vessel coils including thermal analysis of the in-vessel coils (duty cycle)
- D. Joining and testing of multi-material components (coaxial configuration with inner fluid bulk, copper conductor, electrical isolation, steel jacket as vacuum boundary)
- E. Mechanical analyses and verifications
- F. Engineering design with thermo-structural analyses and verifications, applying EM loads, of:
 - attachments to the vacuum vessel
 - feeders
- G. Verification of interfaces, in particular with the other in-vessel components, the vacuum vessel, and the power supply
- Synergies among systems and Teams:
 - Sharing of resources and activities among STP, ICA, ICN (working Team presented in the previous slide)
 - Collaboration with IPP Team that is integrating similar in-vessel coils in ASDEX Upgrade

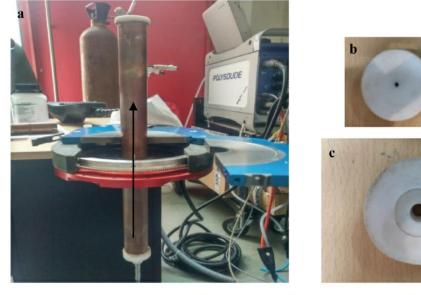
Locations of joints in ITER



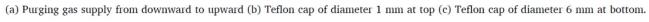
- Amperturn (magnitude/effective value)
- Current and voltage at power supply interface
- Coil operational time related to pulse duration and duty cycle
- Electrical isolation
- Vacuum boundary at the cable jacket
- Fluid boundary at the copper conductor
- Material maximum allowable temperature compatible with:
 - Power exhausting through active cooling (convective heat flux from the cable to the fluid bulk)
 - Vessel baking temperature
- Separated ex-vessel interfaces:
 - Power supply (clamps bolted onto copper conductor)
 - Cooling supply (pipes joined with copper conductors)

(conceptual layout, DTT design does not require double barriers)

[Structural integrity assessment for ITER lower VS coil feedthrough Xuebing Peng et al 2021 Nucl. Fusion 61 036009]



- Forming and integration of coils:
 - Coils and feeders will be formed at the supplier premises (ICN)
 - Coils will be field-formed inside the vacuum vessel (ICA)
- Main issues addressing the activities are:
 - Copper conductor welding with restoration of fluid boundary at the joints
 - Continuity of the electrical isolation at the joints (surface treatments to be studied, in particular using a technopolymer, in order to enhance adhesive bonding: chemical, mechanical, or both)
 - Jacket welding with restoration of vacuum boundary
 - Jacket non destructive testing [Xiao-Chuan Liu et al 2020 J. Phys.: Conf. Ser. 1559 012068]
 - Minimum bending radius [IEC 60702-3:2016]
 - Compatibility with geometrical/interface constraints and interfaced components



Orbital TIG welding of copper for high vacuum boundary applications [https://doi.org/10.1016/j.ijpvp.2020.104225]

Joints are made at the first installation and in case of maintenance/repair

Thank you for your attention and enjoy next presentations

mauro.dallapalma@istp.cnr.it