

Possible KIT contributions to FP9-WPMAG and in particular hybrid HTS-LTS CS coils MS Teams, April 13, 2021 4:00 pm KIT, SPC, ENEA

Institute for Technical Physics

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Agenda / Presentations

Valentina Corato: Update GA / FP9

- P. Bruzzone (SPC) hybrid CS conductor design and test strategy
- N. Bykovskiy (SPC): Status ASTRA conductor
- M. Wolf (KIT) KIT HTS conductor development

ENEA HTS conductor development

Discussion of next steps

All

Final Report on Deliverable(s) Investigation of CS coil design options in 2020 X.Sarasola, IDM EFDA_D_2PDAUA

CS3U: Bz ~ 12 T, Br ~ 5T (Babs ~13 T angle ~ 20deg)

REBCO High Current Cable Concepts

CORC: Conductor on Round Core

D. van der Laan, SUST 22 (2009) 065013

TSTC: Twisted Stacked Tape Cable

M. Takayasu *et al.*, *IEEE TAS* 21 (3) (2011), 2340

The work task been centred out within the framework of the EUROfinian Consortium and has received finding from the Europan research and training programme 2014-2018 under grant agreement No 633053. The views and operiors expressed herein do nat necessarily reflect those of the Europeen Commission.

Stacked-Tape HTS High Current Cable Concepts

C EUROfusion

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Eurotom research and training programme 2014-2018 under grant agreement No 633053. The views and optitions represend herein do nat necessarily reflect those of the Europeon Commission.

Conductor options for HTS part hybrid CS

Quantity	Benefits	Challenges	Comments
Monolithic stack e.g. STARS	Alignment of tapes w.r.t. field possible easy fabrication Strong mechanical support forces parallel to tape normals	Large losses if B perp. Stack (CS3U/L) No length compensation on HTS level	
Roebel from stacks e.g. ASTRA			Covered by SPC
Slotted core e.g. ENEA / VIPER			Covered by ENEA
Roebel from tapes	Alignment of tapes w.r.t. field possible	Mechanical rigidity? Max. tape width 12 mm -> 100 tapes (50 per side) -> accumulation of Lorentz loads	
CICC from (T)STC strands	Experience in manufacturing, first samples tested (mechanical issues identified, however) Comparatively low AC losses	No alignment of tapes to field Length compensation during winding with rather rigid strands? Mechanical issues with strands? No profiles, only round strands in a flat cable (line loads)	

Starting point: STARS-like conductor

"Simplest possible conductor":

- Tapes parallel to the field direction
- Tapes oriented at the radial conductor center
- Several non-twisted stacks
- Stack thickness < 3mm \rightarrow bending strain < 0.1 %
- Lorentz forces perpendicular to tapes
- Low-resistive contact to stabilizer (quench)
- Simple fabrication (pre-fabricate soldered stacks, solder to profiles, assemble, weld jacket)
- Scalable also to higher currents

Challenges and potential show-shoppers:

- AC losses (in particular at the ends of CS3U/L) ?
- Quench and Quench detection?
- Mechanical rigidity of flat jackets?

Possible KIT HTS work within EUROfusion in 2021

- Completion of the HTS quench sample (IC-EU-CN)
- FBI test on a HTS CroCo based triplet sample
- (goal: final qualification of procedures towards the assembly of the EU-CN-SULTAN sample)
- Definition of a third (SPC, ENEA, KIT) HTS conductor option for the hybrid CS
- Prepare a subscale test in FBI (1 stack + "environment" + manufacturability)
- Purchase and characterize tapes
- TH calculations (in cooperation with PoliTo? additional cooling at HTS-LTS-interface due to high AC losses in HTS necessary?)