

# **Isotope effects on the Energetic Particle dynamics** induced by off-axis neutral beam injection on **ASDEX Upgrade**

Ph. Lauber, G. Papp, B. Geiger, B. Vanovac, V. Igochine, M. Maraschek, M. Weiland A. Gude ASDEX Upgrade Team





#### and MET ENR Team



- for predicting (EP) transport in a future burning plasma, models have to go beyond the regimes where present-day experimental data is available for validation
- cover whole parameter space on present day devices to learn about scaling and transitions of EP transport
- not only develop hierarchical models for linear and non-linear EP physics but also start to develop and implement various (hierarchical) models for EP transport and its impact on background profiles — important role of IMAS
- reduced models need special attention in order to deal with complex physics in a huge parameter space
- for comparison: non-linear multi-mode runs for (hybrid) models are available (MET hierarchy)
- within MET: provide set of experimental reference cases to address different aspects of EP transport that will be needed for developing reliable predictive tools
- go beyond near-marginal stability regimes validate codes for intermittent EP transport regimes
- need for suitable experimental data, featuring different levels of complexity
- this talk: summarise history and present status of experiments, suggest further steps





- reminder: NLED base case
- beam angle scan
- beam power scan
- current/q scan
- isotope scan
- transport



outline



#### **WP3-D1**

#### description of MET reference cases: AUG, JT-60U, ITER http://www2.ipp.mpg.de/~pwl/

for DTT: refer to G. Vlad's talk tomorrow

also JET data has been recently modelled (with A. Bierwage)





### reminder: NLED base case



how to extend this benchmark?

MET Workshop 4.March 2021

#### http://www2.ipp.mpg.de/~pwl/NLED\_AUG//data.html





#### see talk F. Vannini, valuable benchmark involving ORB5, HYMAGYC, MEGA, LIGKA





### reminder: NLED base case





# 31213



MET Workshop 4. March 2021

#### reminder: NLED base case

#### http://www2.ipp.mpg.de/~pwl/NLED\_AUG//data.html



# 31214

### scan of beam energy: EGAM persists, AEs disappear











#### reduce current to avoid q=2 see next slide

1.2

#### sawtooth like crashes at q=2surface



### AUG 'EP supershot' scenario: extension to flat top



- with sub-Alfvénic beams (2.5-5MW)
- in current flat top with stationary plasma conditions
- compatible with tungsten wall
- for EP physics (at ITER) relevant parameters:  $\beta_{EP}/\beta_{thermal}$  up to 1,  $E_{NBI}/T_{i,e} \approx 100-150$







#### comparison of discharges w/o mode activity





### central impurity accumulation of W allows for low beta despite NBI heating





- reduced ion LD (exponential dependence) reduced el LD damping (beta)
- moves beam anisotropy in 'correct' frequency range
- •co- and counter propagating modes: off axis EP peak







### **EP phase space analysis: ∂F/∂E**



- EGAM drive is determined by integral along resonance line ω-ωt=0
- no drive due to mismatch of drive region and local GAM frequency
- 2nd resonance  $\omega$  2 $\omega$ t=0 suffers from damping of thermal background - 'anomalous ion heating' [LHD, Ido 2014, H. Wang 2018]





- D beams in D plasma
- H beams in H plasma
- D beams in H plasma





database:

~20 dedicated, low power discharges

aims:

- stationary flat top conditions
- strong EP induced activity
- study mode-mode interaction processes
- transitions between different nl behaviour
- if possible radially resolved mode structure measurements
- isotope effects: excitation conditions,FOW

| #            | EGAM/BAE/ | NBI                                                                                              | angle | behav           | later heating              |                  | I        | В   |
|--------------|-----------|--------------------------------------------------------------------------------------------------|-------|-----------------|----------------------------|------------------|----------|-----|
| <u>27923</u> | y/y/y/n   | <b>2</b> :0.35-0.5; <b>3</b> :0.38-0.59; <b>8</b> 0.59-0.63; <b>5</b> :0.63-0.76; <b>7</b> :0.76 | 6,65  |                 |                            |                  |          |     |
| 28880        | n/y/y/n   | 2:0.35-0.5;3:0.5-0.6;7:0.6                                                                       | 6,65  |                 |                            |                  | 1        | 2,4 |
| <u>28881</u> | y/y/y/n   | 2:0.35-0.5;3:0.5-0.6;7:0.6                                                                       | 6,65  |                 |                            |                  | I        | 2,4 |
| <u>28883</u> | n/y/n/n   | 2:0.35-0.5;3:0.5-0.6;7:0.6                                                                       | 6,65  |                 |                            |                  |          | 2,4 |
| <u>28884</u> | y/y/y/n   | <b>3</b> :0.5-0.6; <b>7</b> :0.6                                                                 | 6,65  |                 |                            |                  |          | 2,4 |
| <u>28885</u> | y/y/y/n   | 2:0.35-0.5;3:0.5-0.6;7:0.6                                                                       | 6,65  |                 |                            |                  |          | 2,4 |
| <u>30383</u> | y/y/y/n   | 7: 0.26-0.75                                                                                     | 6,65  | Hmode           |                            | FILD FHA FIPM 09 |          | 2,6 |
| <u>30945</u> | n/y/n/n   | 2:0.28-0.376;6:0.382-0.697                                                                       | 6,65  | dis@4s          |                            |                  |          | 2,2 |
| <u>30946</u> | y/y/n/y   | 2:0.28-0.445;6:0.451-0.928                                                                       | 6,65  | Lmode           | no heating!                | later TAE???     | <u> </u> | 2,2 |
| <u>30947</u> | y/n/n/y   | 2:0.28-0.478;6:0.482-0.928                                                                       | 6,65  | dis@4s          | H mode                     | EGAM @Is I00kHz  | <u> </u> | 2,2 |
| <u>30948</u> | n/y/y/n   | 2:0.28-0.491;3:0.497-0.789                                                                       | 6,65  | <u>dis@1.2s</u> | <u>Q6@0.789</u>            |                  |          | 2,2 |
| <u>30949</u> | y/y/n/n   | 2:0.35-0.5;3:0.38-0.79;6:0.79;7:1.0;8:1.2                                                        | 6,65  | <u>dis@1.5</u>  |                            | late EGAMs       |          | 2,2 |
| <u>30950</u> | y/y/y/n   | <u>3:0.28-0.295;7:0.312-0.797</u>                                                                | 6,65  | <u>dis@1.5</u>  | 3:0.8-0.92;6, <u>8@0.9</u> |                  |          | 2,2 |
| <u>30951</u> | n/y/n/n   | <u>3:0.28-0.295;5:0.312-0.552,8</u>                                                              | 6,65  | <u>dis@1.7</u>  | 8-0.84;3:-0.99             |                  |          | 2,2 |
| <u>30952</u> | y/y/y/n   | <u>3:0.28-0.295;7:0.312-0.797</u>                                                                | 6,65  | <u>dis@1.18</u> | <u>Q6@0.8</u>              |                  |          | 2,2 |
| <u>30953</u> | y/y/n/n   | <u>3:0.28-0.295;6:0.312-0.753</u>                                                                | 6,65  | <u>dis@1.11</u> | <u>Q2@0.76</u> ++          |                  |          | 2,2 |
| 31213        | y/y/y/n   | <u>3</u> :0.28-0.295;7:0.296-1.033                                                               | 7,13  | <u>dis@1.7</u>  | <u>Q6@1.0</u>              |                  |          | 2,2 |
| 31214        | y/y/y/n   | <u>3</u> :0.28-0.295;7:0.296-1.033                                                               | 6,05  | <u>dis@1.0</u>  |                            |                  |          | 2,2 |
| 31215        | y/y/y/n   | <u>3</u> :0.28-0.295;7:0.296-1.033                                                               | 6,65  | <u>dis@1.0</u>  |                            |                  |          | 2,2 |
| 31216        | y/y/y/n   | 3:0.28-0.295;7:0.296-3.045+blips                                                                 | 6,65  | Lmode           |                            |                  |          | 2,2 |
| 31233        | y/y/y/n   | <u>3:0.28-0.501;7:0.506-3.227</u>                                                                | 7,13  | Hmode           | <u>Q6@1.0</u>              |                  |          | 2,2 |
| 31234        | y/n/y/n   | <u>3:0.28-0.310;7:0.318-0.813</u>                                                                | 7,13  | dis@ 0.8        |                            |                  |          | 2,2 |
| 32326        |           | Q7, 93                                                                                           | 7.13  |                 |                            |                  |          | 2.2 |
| 32327        |           | Q7, 82                                                                                           | 7.13  |                 |                            |                  |          | 2.2 |
| 32328        |           | Q7, 82 +0.5MW ECRH                                                                               | 7.13  |                 |                            |                  |          | 2.2 |
| 32329        |           | Q7, 93 +0.5MW ECRH                                                                               | 7.13  |                 |                            |                  |          | 2.2 |
| 34924        |           | Q7,93 Q6 @2.0                                                                                    |       |                 |                            |                  | 0.8.     | 2.5 |
| 34925        |           | Q7,93 Q6 @2.0                                                                                    |       |                 |                            |                  | 0.8      | 2.5 |
| 36267        |           | Q7, 93 Q6 @5.0                                                                                   | 7.13  | H mode          |                            |                  | 0.8      | 2.5 |
| 36269        |           | Q6, 93                                                                                           | 7.13  | L mode          |                            |                  | 0.7      | 2.5 |
| 36270        |           | Q7, 93                                                                                           | 7.13  |                 |                            |                  | 0.7      | 2.5 |
| 36337        |           | Q7, 93                                                                                           | 7.13  |                 |                            |                  | 0.7      | 2.5 |
| 36338        |           | Q7, 93                                                                                           | 7.13  |                 |                            |                  | 0.7      | 2.5 |
| 36339        |           | Q7, 93                                                                                           | 7.13  |                 |                            |                  | 0.7      | 2.5 |
| 36759        | ļ         | Q7, 93                                                                                           | 7.13  | H in H          | <u> </u>                   |                  | 0.8      | 2.5 |
| 36760        |           | Q7, 93                                                                                           | 7.13  | H in H          |                            |                  | 0.8      | 2.5 |
| 38159        |           | Q7, 93                                                                                           | 7.13  | D in H          | <u> </u>                   |                  | 0.8      | 2.5 |
| 38160        | ļ         | Q7, 93                                                                                           | 7.13  | D in H          |                            |                  | 0.8      | 2.5 |
|              |           |                                                                                                  |       |                 |                            |                  |          |     |



- 2.5MW, 93 kV per source for D
- 1.4MW, 72kV per source for H (technical limitation)

higher L-H threshold in H, stable conditions far from L-H threshold

very different plasmas (profiles) when crossing L-H threshold: •in H mode, often stronger mode activity, smaller spectral width -> continuum • in L mode, better diagnostic possibilities (density fluctuations: reflectometry)

frequency ratios of GAMs/BAEs and TAEs:

$$\omega_{\text{TAE},\text{H}}/\omega_{\text{TAE},\text{D}} = \omega_{\text{AO},\text{H}}/\omega_{\text{AO},\text{D}} = \sqrt{(2n_{\text{D}}/n_{\text{H}})}$$
  
 $\omega_{\text{GAM},\text{H}}/\omega_{\text{GAM},\text{D}} = V_{\text{th},\text{H}}/V_{\text{th},\text{D}} = \sqrt{(2T_{\text{H}}/T_{\text{D}})}$ 

 $\omega_{t,NBI,H}/\omega_{t,NBI,D} = \sqrt{(2 E_H/E_D)}$ : reduced H beam power should allow EGAMs but no TAEs



all experiments: off axis beam injector: (Q6/Q7), either one or two beams, plus diagnostic beam

- $ω_{\text{GAM},D,H}/\omega_{\text{TAE},D,H} = (v_{\text{th}}/R_0)/\omega_{A0} \sim \sqrt{nT} \sim \sqrt{\beta}$









# mode spectrum comparison (I)



#### all shots have EGAMs, all except H->H have also TAEs, BAEs modes in both ion (blueish) and el. diamagnetic (yellowish) directions observed





| / n<br>im<br>0.0 | it: (          | gin<br>).0(<br>00 | : 1            | .00               | 0<br>% |
|------------------|----------------|-------------------|----------------|-------------------|--------|
| %<br>S:<br>)     | 21<br>MH<br>MH | I-B               | 31<br>31       | -14<br>-03        | ł      |
| )                | MH<br>MH<br>MH | I-B<br>I-B        | 31<br>31<br>31 | -01               |        |
|                  | MH<br>MH<br>MH | -B<br> -B<br> -B  | 31<br>31<br>31 | -13<br>-03<br>-01 | 3      |





#### aiming for stationary conditions: L mode with 1 beam

perfect density control in D->H

MET Workshop 4.March 2021









### central Te in L mode



# most stable conditions in D->H



AA:38159/AUGD/CEC(1)/Trod-A



MET Workshop 4.March 2021

### most stable conditions in D->H, slightly inverted Te

### due to staying away from L-H threshold...

![](_page_17_Picture_8.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

IPP

![](_page_20_Figure_1.jpeg)

### EUROfusion kinetic GAM continuum (incl. ellipticity [Gao], w/o EPs)

![](_page_20_Picture_4.jpeg)

Ibb

![](_page_21_Figure_1.jpeg)

### EUROfusion maybe imaginary part needs to be analysed as for NLED case...

MET Workshop 4. March 2021

![](_page_21_Picture_9.jpeg)

![](_page_21_Picture_10.jpeg)

![](_page_22_Picture_0.jpeg)

#### **D->H stays in L mode even with 2 beams:**

![](_page_22_Figure_2.jpeg)

perfect density control in D->H with 2.5 and 5MW

![](_page_22_Picture_4.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Figure_2.jpeg)

MET Workshop 4. March 2021

![](_page_23_Picture_5.jpeg)

![](_page_24_Picture_0.jpeg)

# mode spectrum comparison (III)

# L-mode L-mode

Toroidal mode numbers of AUGD 38160

![](_page_24_Figure_4.jpeg)

# different SAW spectra and gap alignments also non-linear behaviour/chirping strongly modified

![](_page_24_Figure_7.jpeg)

![](_page_24_Figure_8.jpeg)

![](_page_25_Picture_0.jpeg)

### reminder: unstable modes, 3 wave coupling analysis

![](_page_25_Figure_2.jpeg)

- after subtracting/adding rotation (7kHz): ω<sub>TAE-2</sub>-ω<sub>TAE+4</sub>=0
- also: k<sub>ITAE-2</sub>+k<sub>ITAE+4</sub>= 1/(2 q<sub>TAE-2</sub> R)-1/(2 q<sub>TAE+4</sub> R)=0.222-0.211≈0

![](_page_25_Figure_7.jpeg)

• fulfil matching conditions with zero frequency zonal structure: modified parametric decay constellation

![](_page_25_Figure_11.jpeg)

![](_page_26_Picture_0.jpeg)

TAE and BAE redistribute particles radially: FIDA measurements in comparison to neoclassical TRANSP/NUBEAM calculations

control case, where no strong Alfvénic mode activity is observed (#34921): strongly inverted EP gradient, small EP transport

![](_page_26_Picture_4.jpeg)

### radial flattening of EP gradient observed inwards transport

![](_page_26_Figure_6.jpeg)

![](_page_26_Figure_7.jpeg)

![](_page_27_Picture_0.jpeg)

#### background ion temperature profiles show high Ti in core (when many modes are present)

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_4.jpeg)

![](_page_28_Figure_0.jpeg)

0,2

0,4

0,6

0.8

MET Workshop 4. March 2021

#### #36267@3s

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)

 $E_{beam}/T_i \sim 120-150!$ (~3.5MeV/25keV)

![](_page_28_Figure_7.jpeg)

![](_page_28_Picture_8.jpeg)

![](_page_29_Picture_0.jpeg)

TRANSP modelling (with B. Geiger):

- run in semi-interpretative mode: use profiles, in particular ne, Te, q from exp. measurements
- use gyro-bohm model for chi(ions)
- use Nubeam neoclassical model for calculating EP deposition
- compare  $T_i$  and  $n_{EP}$  with actually measured profiles to detect 'anomalous' effects
- in shaded region between s=[0.4-0.7] model predicts correct gradient
- in core s<0.4 and edge s>0.7 T<sub>i</sub> is significantly increased
- at edge, situation is difficult to interpret (losses, change of transport regime etc)
- in core, clear effect on ion heating can be observed

### EP transport, background ion heating?

![](_page_29_Figure_13.jpeg)

![](_page_29_Picture_14.jpeg)

![](_page_30_Picture_0.jpeg)

model

TRANSP modelling (with B. Geiger):

- run in semi-interpretative mode: use profiles, in particular ne, Te, q from exp. measu
- use gy • use N calcula
- compa measu effects in shad
- in core s<0.4 and edge s>0.7 Ti is significantly increased
- at edge, situation is difficult to interpret (losses, change of transport regime etc)
- in core, clear effect on ion heating can be observed

![](_page_30_Figure_10.jpeg)

![](_page_31_Picture_0.jpeg)

- unique set of data for code validation: EGAMs, BAEs, RSAEs, TAE linear, non-linear features, mode-mode interactions and EP transport measured
- NBI distribution is most interesting and most influential ingredient
- EP redistribution influences background profiles
- current redistribution not yet investigated...
- mode symmetry breaking measurements will be attempted again (G. Meng)
- LIGKA/HAGIS package is ready for automated scan (ITER, thx V.A. Popa) -AUG functionality should be available soon (thanks to great work of G Tardini, M. Weiland!):
- run reduced automated analysis for many time slices to find linear stability thresholds, select best cases for expensive codes
- interface LIGKA/ RABBIT started (building on ORB5 tool by T. Hayward-Schneider, B. Rettino) - try ITER H&CD package on AUG?
- implement reduced EP transport models building blocks are ready!

https://confluence.iter.org/pages/viewpage.action?pageId=289069024

# summary & conclusions

![](_page_31_Figure_17.jpeg)

|       |         | 00         |       |
|-------|---------|------------|-------|
| B0[T] | Fuellir | Confin     | Workf |
| -5.3  | н       | L-mod      | METIS |
| -2.65 | Н       | L-mod      | METIS |
| -1.8  | н       | L-H-L      | METIS |
| -3.0  | н       | L-H-L      | METIS |
| -3.3  | н       | L-H-L      | METIS |
| -4.5  | Н       | L-mod      | METIS |
|       |         | $\odot$    | ⊗ IS  |
|       |         |            | S     |
|       |         |            | S     |
|       | Fre     | auencv     | SI    |
|       |         | ,          | SI    |
|       | Da      | amping     | SI    |
|       |         |            | 51    |
|       | Radi    | al Positio | n SI  |
|       |         |            | 51    |
|       | Mode    | Structu    | re SI |
|       |         |            | ٨۶    |
| _     |         |            |       |
| _     |         |            |       |
|       |         |            | i     |
|       |         |            |       |
| -     |         |            |       |
| •     |         |            |       |
|       |         |            |       |
|       |         |            |       |
|       |         |            |       |
|       |         | _          |       |
|       |         |            |       |

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_1.jpeg)

#### [G. Tardini,M Weiland]

![](_page_32_Picture_5.jpeg)