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Introduction: MET motivations and objectives

Predicting the dynamics of a burning plasma on long time scales, comparable
with the energy confinement time or longer, is essential in order to understand
next generation fusion experiments, e.g. ITER;
the crucial role of energetic particles as mediators of cross scale couplings, see
Zonca et al. 2015; Chen and Zonca 2016, must be properly described;

usual transport analysis must be extended to the phase space because of the
underlying kinetic nature of wave-particle interactions and fluctuation excitation;
proper structures describing such transport processes consistently with usual
transport theories are the phase space zonal structures (PSZS);
MET project provides a viable route to computing energetic particle phase space
transport in burning plasmas on long (transport) time scales, based on nonlinear
gyrokinetic theory;
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Introduction: MET hierarchical approach

the zeroth level of simplification consist in the gyrokinetics description of plasma
dynamics;
the first level of simplification consist in assuming |ω| � τ−1

NL ∼ γL;
the second and final level of simplification is the Quasilinear model.

in recent works, i.e. Zonca et al. 2020, the intermediate level of this hierarchy has
been introduced, i.e. the Dyson Schrödinger Model (DSM);
the nonlinear envelope equations describing the SAW fluctuation spectrum and
the PSZS transport equations have been introduced;
beyond the applicability of the wave kinetic equation and of the radially local
description, e.g. flux-tube or quasilinear approaches;
this approach is general and can be applied to 3D magnetic equilibria (see the
talk by A. Zocco in this meeting) and space plasmas;
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Introduction: Purpose statement

In this talk we aim at providing a general method to compute the coefficients
appearing in the nonlinear Schrödinger like equation for the Alfvénic fluctuation
spectrum

this is the essential ingredient for the calculation of energetic particle fluxes (see
the talk by F. Zonca in this meeting);
first step toward the solution of the DSM and the investigation of structure
formation in strongly magnetized toroidal plasmas;
all the terms, even the nonlinear ones, can be calculated by means of linear
physics;
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Notation and fundamental equations

We assume an axisymmetric equilibrium magnetic field B0 in flux coordinates:

B0 = F (ψ)∇ϕ+∇φ×∇ψ

The perpendicular plasma displacement:

δξ⊥ =
c

B0
b×∇Φs ,

can be written in terms of the perturbed stream function:

Φs(r, θ, ζ) =
∑
m

exp(inζ − imθ)Φsm(r)
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Notation and fundamental equations

Following Lu, Zonca, and Cardinali 2012, we decompose Φs:

Φs(r, θ, ζ) = 2π
∑
`∈Z

einζ−inq(θ−2π`)Φ̂s(r, θ − 2π`)

=
∑
m∈Z

einζ−imθ
∫
ei(m−nq)ϑΦ̂s(r, ϑ)dϑ .

ϑ represents the extended poloidal angle coordinate following equilibrium
magnetic field lines;

as a simple illustrative application of the present formalism we recall the
continuous spectrum calculation in the fluid limit . . .
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Fluid theory: SAW/ISW continuous spectrum

. . . Following Chen and Zonca 2016 and the recent Falessi et al. 2019; Falessi
et al. 2020, continuous spectra are obtained from vorticity and pressure balance
equations when |ϑ| → ∞;

(
∂2
ϑ −

∂2
ϑ|∇r|
|∇r|

+
ω2J2B2

0

v2
A

)
y1 = (2Γβ)1/2κg

J2B0B0

qR0

sϑ

|sϑ|
y2(

1 +
c2s
ω2

1

J2B2
0

∂2
ϑ

)
y2 = (2Γβ)1/2κg

B0

B0
qR0

sϑ

|sϑ|
y1

where:

y1 ≡
φ̂s(

βq2
)1/2 ckϑ

B̄0R0
, y2 ≡ i

δP̂comp
(2Γ)1/2P0

,

φ̂s(r, ϑ) ≡ |sϑ||∇r|Φ̂s(r, ϑ), s = rq′/q is the magnetic shear, kϑ = −nq/r,
β = 8πΓP0/B

2

0, Φ̂s and δP̂comp(r, ϑ) are the representation of the perturbed
stream function and the compressional component of the pressure perturbation;
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Fluid theory: SAW/ISW continuous spectrum

linear system of second order ODEs with periodic coefficients;
Floquet theory demonstrate that it must have solutions in the form:

xi = eiνiϑPi(ϑ)

where Pi is a 2π-periodic function i = 1, 2, 3, 4 and the νi are the characteristic
Floquet exponents.

Solving the system for a given r thus calculating νi for each ω we obtain:

νi = νi(ω, r)

this relation involves only local quantities and describes wave packets
propagation along magnetic field lines;
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Fluid theory: Local dispersion relation

local dispersion curves ν(Ω) calculated by FALCON for a Divertor Tokamak Test
(DTT) reference scenario;
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Fluid theory: Local dispersion relation

Any fluctuation with short scale (large- ϑ) radial structure satisfy the same
equations;
therefore it is a linear superposition of Floquet solutions;
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Fluid theory: Polarization

In Falessi et al. 2020; Falessi et al. 2019 we define the concept of polarization of
a Floquet solution:

y
(i)
1 (ϑ; νi, r) = e

(i)
1 (νi, r)ŷ

(i)
1 (ϑ; νi, r) ,

y
(i)
2 (ϑ; νi, r) = e

(i)
2 (νi, r)ŷ

(i)
2 (ϑ; νi, r) .

with the following normalizations:∫
dϑ|ŷ(i)

1 |2 =

∫
dϑ|ŷ(i)

2 |2 = 1 , |e(i)
1 (νi, r)|2 + |e(i)

2 (νi, r)|2 = 1 .

mode polarization is crucial in order to assess the actual coupling with the
continuous spectrum and resonant absorption;
polarization is an integral over ϑ of the solutions;
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Fluid theory: Polarization
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polarization results calculated by FALCON for DTT;
envelope equation coefficients can be calculated similarly . . .
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Fluid theory: Non radially singular response

in the following, we study the governing equations in the general case, i.e. non
radially singular;

following Zonca and Chen 2014a; Zonca and Chen 2014b, we introduce the
formalism of wave equations in slowly evolving weakly non uniform media: φ̂s

(βq2)1/2
ckϑ
B0R0

i
δP̂comp

(2Γ)1/2P0

 ≡ A(r, t)eiS(r)

(
e1(r, t)y1(ϑ; r, t)
e2(r, t)y2(ϑ; r, t)

)

where we have introduced the radial envelope An(r, t) and the eikonal S(r, t);
pressure and vorticity equations reads:

LAe1y1 −
(
2Γβq2

)1/2 g(ϑ,θk)
κ̂⊥

e2y2 = 0

LSe2y2 −
(
2Γβq2

)1/2 g(ϑ,θk)
κ̂⊥

e1y1 = 0

where θk = −i/(nq′)∂rA.
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Fluid theory: Non radially singular response

the WKB eigenvalue problem can then be written as:

D (r, t, kr, ω) ·A(r, t)eiS(r,t) = 0

matrix elements are calculated integrating the solutions of this system along ϑ:
D11 (r, t, kr, ω) =

∫∞
−∞ y∗1LAy1dϑ

D12 (r, t, kr, ω) = D∗21 (r, t, kr, ω) =
∫∞
−∞

(
2Γβq2

)1/2 g(ϑ,θk)
κ̂⊥

y∗1y2dϑ

D22 (r, t, kr, ω) =
∫∞
−∞ y∗2LSy2dϑ

parallel mode structure must have been solved integrating the wave equation
with proper boundary conditions;
this defines a dispersion relation ω = Ω(kr, r, t);
the same approach can be applied to study the kinetic problem . . .
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Kinetic theory: Governing equations for EM potentials

∑〈
e2

m
∂F̄0

∂E

〉
v
δφ+∇ ·

∑〈
e2

m
2µ
Ω2

∂F̄0

∂µ

(
J2
0−1
λ2

)〉
v
∇⊥δφ+

∑
〈eJ0(λ)δg〉v = 0

B0

(
∇‖ + δB⊥

B0
· ∇
)(

δJ‖
B0

)
−∇ ·

∑〈
e2

m
2µ
Ω2

(
B0

∂F̄0

∂E + ∂F̄0

∂µ

)(
J2
0−1
λ2

)〉
v
∇⊥ ∂

∂tδφ+ . . . = 0

∇⊥
(
B0δB‖ + 4πδP⊥

)
' 0

the governing equations for δA‖, δφ are the usual (nonlinear) quasineutrality and
vorticity equations reviewed in Chen and Zonca 2016;

F̄0 is an arbitrary (renormalized) anisotropic distribution function that includes
PSZS contribution;
for describing n 6= 0 fluctuations instead of δA‖ we introduce δψ where
∇‖δψ ≡ −(1/c)∂tδA‖;
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Kinetic theory: Governing equations for EM potentials

following the previous methodology, we introduce:(
eδψ̂n(r, ϑ; t)/T0i

eδφ̂‖n(r, ϑ; t)/T0i

)
≡ An(r, t)eiSn(r,t)

(
e1(r, t)y1(r, ϑ; t)
e2(r, t)y2(r, ϑ; t)

)

from the EM potential equations we readily obtain:
ê+
n ·D (r, t, knr, ωn) ·An(r, t)eiSn(r,t) = ê+

n · F (r, t) ,

F (r, t) denotes all nonlinear interactions and external forcing . . .
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Kinetic theory: The Dyson Schrödinger Transport Model

we now introduce the main assumption of the model:

|γLn| ∼ τ−1
NLn � |ωn|

that is that the non-linear characteristic time scale is very long compared to ω−1;

consistently, y1, y2 can be approximated by the corresponding linear parallel
mode structures;
D can be calculated at any order of this asymptotic expansion, e.g. the lowest
order local dispersion relation reads:

D0
Rn (r, t, knr, ωn) ≡ ê+

n ·D0
R · ên = 0

while the radial envelope equation reads . . .
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Kinetic theory: The Dyson Schrödinger Transport Model

∂

∂t

(
∂D0

Rn

∂ωn
A2
n

)
− ∂

∂r

(
∂D0

Rn

∂knr
A2
n

)
+ 2D1

AnA
2
n − 2iD1

RnA
2
n

+iAn

(
∂2D0

Rn

∂k2
nr

+ 2
∂ê+

n

∂knr
·D0

Rn ·
∂ên
∂knr

)
∂2An
∂r2

= −2ie−iSnAnê
+
n · F

−
(
ê+
n ·

d

dt
ên −

d

dt
ê+
n · ên

)
∂D0

Rn

∂ωn
A2
n +

(
∂ê+

n

∂ωn
·D0

Rn ·
∂ên
∂t
− ∂ê+

n

∂t
·D0

Rn ·
∂ên
∂ωn

)
A2
n

−
(
∂ê+

n

∂knr
·D0

Rn ·
∂ên
∂r
− ∂ê+

n

∂r
·D0

Rn ·
∂ên
∂knr

)
A2
n .

beyond the standard wave kinetic equation;

wave packets can be focused/defocused and back scattered by both
nonlinearities as well as by radial nonuniformities;
additional terms of fundamental importance in the description of EP induced
avalanches, see Zonca et al. 2005, but also for the interaction of zonal fields and
drift wave turbulence, see Guo, Chen, and Zonca 2009;
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∂ê+

n

∂ωn
·D0

Rn ·
∂ên
∂t
− ∂ê+
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Kinetic theory: Computation of DSM coefficients

F takes the form of a weighted average along the linear parallel mode structure
of the nonlinear term describing nonlocal interactions in the mode number space;

ê+ · F = e∗1(r)

∫ ∞
−∞

dϑy∗1 [V ort]
NL

+ e∗2(r)

∫ ∞
−∞

dϑy∗2 [QN ]
NL

continuum calculation, e.g. such as the FALCON/FALCON-K results, constitute the
boundary conditions in the ballooning space, i.e. ϑ→ ±∞, to determine
y1, y2, e1, e2;
DAEPS code already solve for these structures (see the next talk by Y. Li);
FALCON/FALCON-K has been used for a proof of principle calculation of parallel
mode structures and a comparison with DAEPS is foreseen;
all the coefficients appearing in the NLS equation are calculated accordingly;

M. V. Falessi DSM coefficients calculation CNPS Workshop on MET 20 / 22



Kinetic theory: Computation of DSM coefficients

F takes the form of a weighted average along the linear parallel mode structure
of the nonlinear term describing nonlocal interactions in the mode number space;

ê+ · F = e∗1(r)

∫ ∞
−∞

dϑy∗1 [V ort]
NL

+ e∗2(r)

∫ ∞
−∞

dϑy∗2 [QN ]
NL

continuum calculation, e.g. such as the FALCON/FALCON-K results, constitute the
boundary conditions in the ballooning space, i.e. ϑ→ ±∞, to determine
y1, y2, e1, e2;
DAEPS code already solve for these structures (see the next talk by Y. Li);
FALCON/FALCON-K has been used for a proof of principle calculation of parallel
mode structures and a comparison with DAEPS is foreseen;
all the coefficients appearing in the NLS equation are calculated accordingly;

M. V. Falessi DSM coefficients calculation CNPS Workshop on MET 20 / 22



Kinetic theory: Connection with PSZS equations

the role of PSZS in the calculation of parallel mode structures is crucial and they
must evolve consistently with the radial envelope equation;

non perturbative W-P interactions can modify lowest order plasma dispersion
properties;
phase space fluxes appearing in the PSZS equation depend on turn on the em
potentials (see the talk by F. Zonca) that can be calculated solving the envelope
equation;
the DSM constitute a viable reduced transport model to characterize energetic
particle transport on long time scales in realistic tokamak plasmas;
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Summary & Conclusions

we have recalled how the mode structure decomposition/ballooning formalism
allows to describe the continuous spectrum local dispersion relation;

we have shown how this theory describes also perturbations that are non radially
singular;
the same formalism can be applied to the kinetic equations;
we have described how to calculate the coefficients appearing in the envelope
equation of the DSM model using only linear parallel mode structures;
linear codes, e.g. DAEPS, LIGKA, FALCON/FALCON-K can provide the required
inputs;
moving towards the first DSM simulation in realistic equilibria!
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Thank you for your attention.
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