Alfvén wave simulation using implicit particle scheme: from 1D to torus geometry

Zhixin Lu

Acknowledge: A. Mishchenko, G. Meng, Ph. Lauber, K. Kormann,

A. Bottino, X. Wang, M. Hoelzl

Eurofusion ENR WP19-ER/ENEA-05 (MET), WP19-ER/MPG-03 (Jorek), GK-PIC workshop

MET Project Mid-Term Workshop March 23 - 25, 2020

Ongoing work for MET project

1. D Fo p	evelopment of full f, implicit, mixed Particle-in-Cell-Particle-in- ourier (PIC-PIF) method for simulation of Alfven wave and EP hysics (2019,2020)	WP2-WP3
2. Anisotropic EP effects on zonal flow residual (mainly in 2019; paper to be written in 2020)		WP1

This talk is for Part. 1

Background and motivation

• Related work on implicit scheme

[Günter JCP09, Kleiber POP16, Perse, Numkin19, ELMFIRE, XGC]

- Implicit scheme can be complementary to CT, pullback...
 - For a system with N_G field grids and N_p particles, the total Degree of Freedom (DOF) is $(N_G + N_p)$
 - The direct implicit solver requires solving a linear system with $DOF=N_G + N_p$. Matrix size is $(N_G + N_p)^2$!!!
 - Solution: "particle enslavement" [Chen, et al, J. Comput. Phys. 230 (2011) 7018]
 - Particles (x, v) represented as functions of field F(x)
 → DOF reduced to N_G!!!
- This work: study the minimum cost of implicit scheme
 - Focus on Darwin model, instead of Vlasov-Maxwell [Perse, et al, Numkin 2019]
 - Focus on Alfven modes, kinetic electron, realistic β/m_e
 - Derive general equations for FEM-particle-implicit scheme, useful for TRIMEG and also other codes (Finite difference in [Chen 2011])

Present TRIMEG version: electrostatic, δf , mixed PIC-PIF, unstructured mesh, FEM, as a testbed. [Z.X. Lu, Ph. Lauber, T. Hayward-Schneider, A. Bottino, M. Hoelzl, *Phys. Plasmas*, 26, 122503 (2019)]

Models and equations

- Normalized equations
 - Parallel electron motion:
 - $\frac{dl}{dt} = v_{||}; l: \text{parallel coordinate}$ $\frac{dv_{||}}{dt} = \partial_{||}\delta\phi + \partial_{t}\delta A_{||}$
 - Ampere's law & quasi-neutrality

$$\nabla_{\perp}^{2} \delta A_{\parallel} = C_{A} \delta J_{\parallel}$$
$$\nabla_{\perp} \cdot \left(\frac{B_{0}^{2}}{B^{2}} \nabla_{\perp} \delta \phi \right) = C_{P} \delta N$$

- Normalization units
 - $R_N = 1m$, $v_N = \sqrt{2T_e/m_e}$
 - $\delta \phi$ normalized to $m_e v_N^2/e$

• Crank-Nicolson scheme (implicit)

$$\frac{l^{t+\Delta t}-l^{t}}{\Delta t} = \frac{v_{||}^{t+\Delta t}+v_{||}^{t}}{2}$$
$$\frac{v_{||}^{t+\Delta t}-v_{||}^{t}}{\Delta t} = \partial_{||} \frac{\delta \phi^{t+\Delta t}+\delta \phi^{t}}{2} + \frac{\delta A_{||}^{t+\Delta t}-\delta A^{t}}{\Delta t}$$
$$\nabla_{\perp}^{2} \delta A_{||}^{t,t+\Delta t} = C_{A} \delta J_{||}^{t,t+\Delta t}$$
$$\nabla_{\perp} \cdot \left(\frac{B_{0}^{2}}{B^{2}} \nabla_{\perp} \delta \phi^{t,t+\Delta t}\right) = C_{P} \delta N^{t,t+\Delta t}$$

• Total Degree of Freedom: $(N_G + N_p)!$

Analytic treatment in iteration: "moment enslavement"

• Iteration steps

i: iteration #

$$\xrightarrow{1} \left\{ \begin{array}{l} \delta\Phi^{start}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i} \xrightarrow{2} \left\{ \begin{array}{l} l(t+\Delta t) \\ v_{\parallel}(t+\Delta t) \end{array} \right\}^{i} \xrightarrow{3} \left\{ \begin{array}{l} \delta N^{end}(t+\Delta t) \\ \delta J^{end}(t+\Delta t) \end{array} \right\}^{i} \xrightarrow{3} \left\{ \begin{array}{l} \delta\Phi^{end}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array} \right\}^{i+1} \xrightarrow{4} \left\{ \begin{array}{l} \delta\Phi^{start}_{\parallel}(t+\Delta t) \\ \delta A^{start}_{\parallel}(t+\Delta t) \end{array}$$

- 1. Each iteration starts with the given field $\{F^{start}(t + \Delta t)\}^i$, where $F \equiv \{\delta\phi, \delta A_{\parallel}\}$
- 2. Push particles implicitly from t to $t + \Delta t$.
- 3. In the end of each iteration, fields $\{F^{end}(t + \Delta t)\}^i$ are solved
- 4. Fields $\{F^{start}(t + \Delta t)\}^{i+1}$ are set so that $|\{F^{start}(t + \Delta t)\}^{i+1} \{F^{end}(t + \Delta t)\}^{i+1}| \rightarrow 0$ in the next iteration.

Analytic form for setting $\{F^{start}(t + \Delta t)\}^{i+1}$: $\{\delta\phi^{start}, \delta A^{start}_{\parallel}\}^{i+1} = \{\delta\phi^{end}, \delta A^{end}_{\parallel}\}^{i} + \{\Delta\delta\phi, \Delta\delta A_{\parallel}\},$ with $\begin{bmatrix} \left(\frac{1}{C_P}\nabla_{\perp}^2, & 0\\ 0, & \frac{1}{C_A}\nabla_{\perp}\cdot\frac{B_0^2}{B^2}\nabla_{\perp}\right) - \overline{\overline{M}}_c \end{bmatrix} \cdot \begin{bmatrix} \Delta\delta\phi\\ \Delta\delta A_{\parallel} \end{bmatrix} = \begin{bmatrix} \delta N^{end} - \delta N^{start}\\ \delta J^{end} - \delta J^{start} \end{bmatrix}^{i}, \ \overline{\overline{M}}_c = \begin{bmatrix} \frac{\partial\delta N^{end}}{\partial\delta\phi}, \frac{\partial\delta N^{end}}{\partial\delta A_{\parallel}}\\ \frac{\partial\delta J^{end}}{\partial\delta\phi}, \frac{\partial\delta J^{end}}{\partial\delta A_{\parallel}} \end{bmatrix}$

 $(N_G + N_p)^2$ matrix inversion: unacceptable \rightarrow particle enslavement [G. Chen 2011]

 $\overline{\overline{M}}_{c} \approx \begin{vmatrix} \frac{k_{\parallel} \Delta t^{2}}{4}, -i \frac{k_{\parallel} \Delta t}{2} \\ i \frac{k_{\parallel} \Delta t}{2}, 1 \end{vmatrix}$ obtained analytically! $\overline{\overline{M}}_{c}$ calculation $(N_{G} \times N_{p})$: not cheap \rightarrow analytic acceleration here, i.e., "moment enslavement"

Otherwise more expensive by a factor of N_p/N_G , i.e., particle/grid number ratio, if calculating $\overline{\overline{M}}_c$ using particles.

Shear Alfven wave simulated

- 1D Shear Alfven wave simulated
 - Accessible β/M_e =32, i.e., $\beta = 0.01$, $M_e \equiv \frac{m_e}{m_i} = 1/3200$

Non uniform loading needed for resolving wave-particle resonance

Shear Alfven wave simulation (prototype version)

- Simplified model for Toroidicity induced Alfven Eigenmode (TAE) simulation
 - Ion response: only polarization density Parameters: aims for ITPA case [Koenies et al 58, 126027(2018)]
 - Electron: full f, parallel nonlinear motion kept (zero drift & ExB motion; zero mirror force)
- Convergence of the implicit scheme

• TAE 2D mode structure (w/o EPs)

Caveat: reduced β/m_e value with $m_e = 0.002$, $\beta = 0.001$. Fourier in (θ, ϕ) , FEM in r direction. Toroidal mode #: n = -6. Only 2 poloidal harmonics kept. Mixed explicit (Runge-Kutta)-implicit scheme in torus

• Treat the equilibrium particle motion explicitly but the perturbed one implicitly

$$\frac{dR}{dt} = v_{\parallel} \boldsymbol{b} + \boldsymbol{v}_{d} + \frac{\boldsymbol{b}}{B} \times \nabla(\delta \phi - v_{\parallel} \delta A)$$
$$\frac{dv_{\parallel}}{dt} = -\mu \partial_{\parallel} B - \frac{e_{s}}{m_{s}} (\partial_{\parallel} \delta \phi + \partial_{t} \delta A)$$

It is possible to treat all terms implicitly, but not necessary

•	Equilibrium particle motion (explicit)
	$\frac{dR_0}{dt} = v_{\parallel} \boldsymbol{b} + \boldsymbol{v}_d$
	$\frac{d\boldsymbol{v}_{\parallel 0}}{dt} = -\mu \partial_{\parallel} B$

• Perturbed particle motion (implicit)

$$\frac{dR_1}{dt} = \frac{b}{B} \times \nabla (\delta \phi - v_{\parallel} \delta A)$$

$$\frac{dv_{\parallel 1}}{dt} = -\frac{e_s}{m_s} (\partial_{\parallel} \delta \phi + \partial_t \delta A)$$

Runge-Kutta 4th order implemented Geometric scheme of interest

RK4 particle integrator, implicit particle-field iteration

• RK4 integrator gives reasonable conservation of canonical momentum (P_{ϕ}) & energy (E)

-0.04

500

1000

1500

0.5 (P_{can}-P_{can})/P_{can} Щ $\rho_t = 6.3e - 5$ avg ш Ē kin -1.5 -10 0 2 0 <10⁻⁴ 0.04 ,)/E_{avg} (P can - P can)/P can 0.02 0 0.05 0.02

500

1000

1500

 $\rho_t = 0.02$

larger ρ_t

- The implicit field-particle solver shows reasonable convergence
 - Radial component of $\delta \boldsymbol{v}$ included
 - More tests for large β/m_e ongoing

Outlook

- Possible contributions to MET in 2020
 - Full f, implicit, nonlinear particle simulation of Alfven waves, driven by EPs
 - Caveat: single n (particle-in-Fourier in toroidal direction); ad-hoc equilibrium
 - In parallel with HAGIS full f simulation
 - Anisotropic EP distribution effects on zonal flow residual

Previous IAEA work to be finalized [Z. Lu et al, Effects of anisotropic energetic particles on residual zonal flow]

• Comments & suggestions are welcome

Four tests of implicit scheme (full f)

- 1D case, gyrokinetic electrons
 - Shear Alfven wave, SAW (done)
 - Current driven mode (to do)

- 2D Single flux surface (cylinder limit)
 - Shear Alfven wave simulated (well passing particle limit)

- 3D circular geometry (tokamak)
 - TAE structure, simplified model
 - Need improvement for large β/m_e

3D realistic tokamak

Need more time in 2020
Goal: tests of electromagnetic, full f, implicit, kinetic e⁻ model
Complementary to other codes