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Outline

Transport hierarchical scheme: Vlasov-Poisson system.

Relevance of the self-consistency.

Extension of the QL model.

Deliverable of WP2.
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The Vlasov-Poisson system

Interaction: energetic electron beam and cold background plasma.

Kinetic description in Fourier space - Beam distribution function
f (t, v , x) normalized to NB = nBL (1D periodic slab 0 6 x 6 L):

nBL =

∫
f (t, v , x)dv dx fB(t, v) ≡

∫
f (t, v , x)dx

Vlasov-Poisson coupled system - Fourier components of electric
field Ek(t) and of the distribution function fk(t, v). It reads

∂t fk = −ikvfk +
e

m

∑
q

Ek−q∂v fq ∂tEk = −iωpEk +
2πeωp

k

∫
dv fk

f0: only component having non-zero initial condition (spatial homo-
geneity), main transport properties of the system:

∂t f0 −
e

m

∑
k

[
E ∗k ∂v fk + Ek∂v f

∗
k

]
= 0
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Validation of the hierarchical transport module -
Direct integration using explicit expression of fluxes:
⇒ sample Ek and fk from simulations.

Results exactly match the fully self-consistent N-body system:

∂τ f̄B(τ, u) = ∂u

[
4π
∑
`

[
`φ̄b` f̄

a
` − `φ̄a` f̄ b`

]]
- Analog of this scheme has been verified for EP/AE transport

- flux expression with HMGC → Falessi talk.

Normalization: x̄ = x(2π/L), τ = tωp, u = v(2π/L)/ωp, ` = k(2π/L)−1.
Dimensionless distribution f̄ (τ, u, x̄) (histograms of the phase-space):

f0(t, v) =
nB(2π/L)

ωpM
f̄B(τ, u) M =

∫
F̄B(u)du
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Diagonal reduction

Assumption: fk receives mainly contribution by the correspondent
harmonics (neglect mode-mode interaction):

∂t fk = −ikv fk +
e

m
Ek∂v f0

Substituting fk(t, v) = e
m

∫ t
0 dt ′Ek(t ′)e ikv(t′−t)∂v f0(t ′, v) into the f0

Vlasov equation (cc-notation: k > 0) :

∂t f0(t, v)− e2

m2

∑
k

[
E ∗k ∂v

(∫ t

0
dt ′ Ek(t ′)e ikv(t−t′)∂v f0(t ′, v)

)
+ c .c .

]
= 0

Equation base of reduced transport model hierarchy for 1D
beam-plasma system.
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Self-consistent Dyson-like system

Without loss of generality, the electric field can be set as

Ek (t) ∝ exp
[
− i

∫ t

0
dt′ ωk (t′)

]
⇒ Ek (t′) = Ek (t) exp

[
− i

∫ t′

t
dy ωk (y)

]

Substituting into reduced Vlasov eq (+Poisson): Dyson-like system

∂t f0(t, v) =
e2

m2

∑
k>0

|Ek (t)|2∂v
(∫ t

0
dt′ exp

[
ikv(t′ − t)− i

∫ t′

t
dy ωk (y)

]
∂v f0(t′, v) + c.c.

)

∂t |Ek |2 =
2πe2ωp

mk
|Ek |2

(∫ ∞
−∞
dv

∫ t

0
dt′ exp

[
ikv(t′ − t)− i

∫ t′

t
dy ωk (y)

]
∂v f0(t′, v) + c.c.

)

Fully self-consistent scheme (1D analogous of WP2.1-M1).
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External fields

Approximation Level 1: direct integration for given spectrum Ek(t)
from simulation only.

The diagonal reduced Vlasov equation

∂t f0(t, v)−
e2

m2

∑
k

[
E∗k ∂v

(∫ t

0
dt′ Ek (t′)e ikv(t−t′)∂v f0(t′, v)

)
+ c.c.

]
= 0

can be manipulated to obtain the (normalized) transport equation:

∂τ f̄B(τ, u) = ∂u
∑
`

`2(φ̄`Ḡ
∗
` + φ̄∗` Ḡ`)

∂τ Ḡ`(τ, u) = −i`uḠ` + φ̄`∂u f̄0

Ḡ`: spectral components of the distribution function. Tabulated
φ̄`(τ) from sims: RK (4th) evolves the system in time. Initial
conditions: f̄B(0, u) = F̄B(u) (Gaussian-bump), Ḡ`(0, u) = 0.
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External fields: self-consistency issue
[NC, F. Finelli, G. Montani, Europhys. Lett. 127, 25002 (2019)]

Single constant mode - Under the diagonal assumption, and using
the diagram summation applied to the Dyson formulation:

f̂0(ω, ξ) =
iF0(ξ)

ω
− α2∂ξ

1

ω2 − α2ξ2
∂ξ f̂0(ω, ξ) α2 =

√
2ek |E sat

k |/m

where ξ = (k/α)(v − ωR
k /k).

Defining Ψ(ω, ξ) = α2(ω2 − α2ξ2)−1∂ξ f̂0(ω, ξ):

∂2
ξΨ(ω, ξ) +

(
ω2α−2 − ξ2

)
Ψ(ω, ξ) =

i

ω
∂ξF0(ξ)

closely resembling the equation for parabolic cylinder functions (PCFs):

∂2
ξψn(ξ) + (2n + 1− ξ2)ψn(ξ) = 0 ψn(ξ) =

e−ξ
2/2√

2nn!
√
π
Hn(ξ)

where PCFs are an orthonormal basis and Hn(ξ) are the Hermite pols.
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Analytic solution of the diagonal reduced Vlasov equation:

fB(t, v) = FB(v) +
∑
n>0

βn

2n + 1
∂vψn(v)[1− cos(α

√
2n + 1 t)]

written in terms of PCFs ψn and with

βn =

∫
dv ψn(v)∂vFB(v)

- Analytic sol. well describe resonance position and non-linear spread, but generates corrugation and gradient inversion.
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Integration of reduced Vlasov equation: transport eq. ∂t fB = ∂vΓ.
In the case of external constant mode: same results.

As soon as we consider the self-consistent mode extracted from
dynamics, the morphology well resembles the numerical simulation.

⇒ Shortcoming of the analytical sol is NOT related to the truncated
expansion, but the constant mode assumption ⇒ self-consist. importance.
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Quasi-linear model

Approximation level 2:
- fB (and ωk) not fast varying in time;

- broad (and dense) spectrum:
∑

k (...)→
∫ kmax

kmin
dk N (k)(...)

- with the spectral density N = m/∆k (∆k is the spectral width).

Self-consistent Dyson eqs (diagonal reduced VP system) rewrite:

∂t f0(t, v) = ∂v (DQL(t, v)∂v f0) DQL =
e2πN
m2v

|E (t, v)|2

∂t |E (t, v)|2 = 2γQL(t, v)|E |2 γQL =
2π2e2v2

mωp
∂v f0

→ Velocity space: continuous spectrum |E (t, k)| → |E (t, ωp/v)| from
the discrete one, specified by resonance conditions (set ωk ' ωp).
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Dimensionless variables - I(τ, u) = |φ|2 (spectrum), N̄ = m/∆`:

∂τ f̄B(τ, u) = ∂u

[πN̄
u3

∂ufB I0 exp[H]
]

∂τH(τ, u) =
πη

M
u2 ∂u f̄B

- Parallel formulation wrt spectral PDE: precise representation of the
discrete simulated mode spectrum (smoothing for ∂uI)

- Initial conditions: f̄B(0, u) = F̄B(u), H̄(0, u) = 0.

Spectral evolution:

I(τ, u) = I0 exp[H] I0 = I(0, u)
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Extension of QL model

[G. Montani, F. Cianfrani, NC, Plasma Phys. Contr. Fusion 61, 075018 (2019)]

VP reduced system:

∂t f0(t, v) =
e2

m2

∑
k>0

|Ek (t)|2∂v
(∫ t

0
dt′ exp

[
ikv(t′ − t)− i

∫ t′

t
dy ωk (y)

]
∂v f0(t′, v) + c.c.

)

∂t |Ek |2 =
2πe2ωp

mk
|Ek |2

(∫ ∞
−∞
dv

∫ t

0
dt′ exp

[
ikv(t′ − t)− i

∫ t′

t
dy ωk (y)

]
∂v f0(t′, v) + c.c.

)

Integral in dt ′ can be rewritten as

∫ t

0
dt′

∂v f0(t′, v)

i(kv − ωk (t′))
∂t′
(

exp
[
ikv(t′ − t)− i

∫ t′

t
ωk (y)dy

])

As QL model: assuming a dense Langmuir spectrum kv = ωk [∀v ].
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Taylor expansion ∂v f0(t ′, v) = ∂v f0(t, v) + (t ′ − t) ∂t∂v f0(t, v). We
also assume ωk = ωp + δωk ' ωp (the exponent is almost vanishing):∫ t

0
dt′

∂v f0(t, v)

i(kv − ωk (t′))
∂t′
(

exp
[
i(t′ − t)δωk − i

∫ t′

t
δωk (y)dy

])
+

−
∫ t

0
dt′

∂t∂v f0(t, v)

i(kv − ωk (t′))
exp

[
i(t′ − t)δωk − i

∫ t′

t
δωk (y)dy

]
As QL model, assuming ωk not fast varying in time, the t = 0
contribution results to be exponentially small [O’Neil 71]:

∂v f0(t, v)

i(kv − ωk (t))
+

∂t∂v f0(t, v)

(kv − ωk (t))2

Evolution of the distribution function (before broad spectrum
assumption,

∑
k (...)→

∫
dk N (k)(...) with N = const.):

∂t f0 = ∂v (DQL(t, v)∂v f0 + D1(t, v)∂t∂v f0) DQL(t, v) ≡
e2

m2

∑
k>0

|Ek |2
[ 1

i(kv − ωk )
+ c.c.

]
D1(t, v) ≡

e2

m2

∑
k>0

| Ek (t) |2
[ 1

(kv − ωk )2
+

1(
kv − ω∗k

)2

]
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Using the same approach, Poisson equation can be restated as:

∂t |Ek (t)|2 = 2Γk |Ek |2

Γk(t) = γQL
k

+ δγk

δγk (t) =
πe2ωp

mk

∫ +∞

−∞
dv
[ 1

(kv − ωk )2
+

1(
kv − ω∗k

)2

]
∂t∂v f0

the QL growth rate γQL
k is obtained for Im(ωk)� ωp.

The non-resonant contribution to the growth rate δγk can be
evaluated as (details in the PPCF paper:)

δγk = −
4(
√

2− 1)πe2ωp

mk2Γk
∂t∂v f0|v=ωp/k

Equation for Γk :

Γk = γQL
k −

4(
√

2− 1)πe2ωp

mk2Γk
∂t∂v f0|v=ωp/k
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Using dimensionless variable (barred growth rates are in ωp units):

∂τ f̄B(τ, u) = ∂u(D̄QL∂u f̄B) + ∂u(D̄1∂τ∂u f̄B)

DQL(τ, u) = πN̄ I/u3

D1(τ, u) = 6N̄ u Γ̄ ∂2
u(I/u2)

∂tI(τ, u) = 2Γ̄I

Γ̄(τ, u) = γ̄QL/2
(

1 +
√

1− 4δ̄2/γ̄2
QL

)
γ̄QL(τ, u) =

πηu2

2M
∂u f̄B

δ̄2(τ, u) =
(
√

2− 1)ηu2

M
∂τ∂u f̄B

Model valid for short times (t ′− t)� 1 (time scale before flattening:
avoid the divergence in the instantaneous growth rate Γ̄(τ, u)).
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Expansion of Γ̄(τ, u) for small perturbations, i.e., for 4δ̄2/γ̄2
QL � 1:

Γ̄(τ, u) = γ̄QL − δ̄2/γ̄QL

Using I = I(0, u) exp
[ ∫ τ

0 2Γ̄(τ ′, u)dτ ′
]

and taking the primitive of

the exact differentiation (δ̄2/γ̄QL ∼ ∂τ ln[∂u f̄B ]):

I
IQL

=
( |∂uF̄B |
|∂u f̄B |

)4(
√

2−1)/π

During the flattening, ∂u f̄B clearly decreases with respect to the
Gaussian initial condition: enhancing of the predicted spectrum
with respect to the QL one.
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Numerical results

Reference case: broad spectrum, 45 modes, τac/τB ' 0.02.

- QL approximation for KD = τac/τB � 1: particles feel all spectrum
before trapping time → (random walk); diffusion-like process.

- Numerically evolved modes (Hamiltonian system) have growth rate values well predicted by the Landau expression.
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Distribution function: N-body vs. QL model

- Time delay in the QL evolution: slower formation of the plateau (hypothesis of slow evolution of f0).

- Flattening discrepancy: QL plateau is larger. No fixed set of modes.
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Spectral evolution: N-body vs. QL model

- Field intensity is very small: recover the linear growth of the intensity (standard inverse Landau damping rate).

- QL model is not predictive in the temporal mesoscales: diffusive-like behavior not present in the real simulations.

- Mixed diffusion/convection.

- Diffusive contribution induces a too early termination of the linear regime (spectrum remains at a lower level).

- Flattening width discrepancy: QL spectrum is larger (fixed number of simulated modes).
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Spectral evolution: Extended vs. standard QL model

Early temporal mesoscales: extraction of distribution function from the
N-body dynamics (∂u f̄B) to evaluate:

I
IQL

=
( |∂u F̄B |
|∂u f̄B |

)4(
√

2−1)/π

- Amended spectrum (orange) is significantly close to the numerical one (original QL spectrum in green).

- First order correction to the f0 slow varying assumption enhance the growth rate: cure the spectral evolution
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Deliverable of WP2

→ Proposed an extension of QL model: cross-coupling terms among
spectral components are still neglected (possible revised picture (?)).

→ Importance of convective transport (breakdown of diffusive paradigm)
also addressed in the comparison wrt HAGIS-LIGKA sims.

→ 1D transport module (almost) fully addressed. Help in defining
peculiar physics for the general scheme (i.e., spectral self-consistency).
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→ First approximation level started with HMGC code (Falessi talk).

→ Numerical implementation of the flux transport equation.

→ FALCON to calculate parallel mode structure (Falessi talk).
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