Transport in the beam-plasma system:
self-consistency issue and extension of the QL model

Updates on WP2

Mid-term MET Workshop, 23rd March 2020

w2 MET, 23rd March 2020

1/23



Outline

Transport hierarchical scheme: Vlasov-Poisson system.

Relevance of the self-consistency.
@ Extension of the QL model.

Deliverable of WP2.
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The Vlasov-Poisson system

@ Interaction: energetic electron beam and cold background plasma.

@ Kinetic description in Fourier space - Beam distribution function
f(t, v, x) normalized to Ng = ngL (1D periodic slab 0 < x < L):

nBL:/f(t, v, x)dv dx fa(t, V)E/f(t, v, x)dx

@ Vlasov-Poisson coupled system - Fourier components of electric
field Ex(t) and of the distribution function fi(t, v). It reads

. e . 2mew
Ot = —ikvf + - Eq: Ex_q0\1q OtEx = —iwpEx + p P/dv fx

@ fy: only component having non-zero initial condition (spatial homo-
geneity), main transport properties of the system:

Oufo — — Zk: [E;0,fi + Exdu 7] = 0

w2 MET, 23rd March 2020 3/23



@ Validation of the hierarchical transport module -
Direct integration using explicit expression of fluxes:
= sample E; and fi from simulations.

Results exactly match the fully self-consistent N-body system:

O-f(7,u) = 9, [M > {&55 7~ 97 FZb”
¢

- Analog of this scheme has been verified for EP/AE transport
flux expression with HMGC — Falessi talk.

o Normalization: X = x(27/L), T = twp, u = v(27/L)/wp, £ = k(2m/L)7".
Dimensionless distribution (7, u,X) (histograms of the phase-space):
2 /L) -

fo(t,v) = ”BL = Fa(r u) M:/,‘:—B(u)du
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Diagonal reduction

@ Assumption: fi receives mainly contribution by the correspondent
harmonics (neglect mode-mode interaction):

Oef = —ikv fi + %Ekf)vﬁ)

Substituting fi(t,v) = £ [ dt'Ex(t)e™ (=99, f(t', v) into the f
Vlasov equation (cc notatlon k >0):

Defo(t,v) = — Z [Ek (/Oi!t’ Er(t)e™ (=g, (¢, v)) + c.c.] =0

@ Equation base of reduced transport model hierarchy for 1D
beam-plasma system.
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Self-consistent Dyson-like system

@ Without loss of generality, the electric field can be set as

Ei(t) o exp | /dt wi(t)] = Ei(t') = Ex(t) exp | / dy wi(y)]

@ Substituting into reduced Vlasov eq (+Poisson): Dyson-like system

Befot,v) = — Z|Ek(t 28 /dt exp [,kv(t —1) /dywk y)]a ot v)—l—cc)

k>0

ore? oo t t/
O |Ex|? = %\Ek\z(/ dv/0 dt’ exp [ikv(t' —t) — i/dywk(y)]avfo(t', v) + c.c.)
— 00 t

Fully self-consistent scheme (1D analogous of WP2.1-M1).
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External fields

@ Approximation Level 1: direct integration for given spectrum E(t)
from simulation only.

@ The diagonal reduced Vlasov equation
2 t . ’
efo(t,v) — — [E: 8V</dt' E(t')e™ (=t a, (¢, v)) n c.c.] =0
m P 0

can be manipulated to obtain the (normalized) transport equation:

87'FB(7_7 U) =0y Zgz(éfég + &Ge)
4

0y Gy(1,u) = —iluGy + ¢p0,f

° g_g: spectral components of the distribution function. Tabulated
¢e(7) from sims: RK (4th) evolves the system in time. Initial
conditions: fg(0, u) = Fg(u) (Gaussian-bump), G,(0, u) = 0.
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External fields: self-consistency issue

[NC, F. Finelli, G. Montani, Europhys. Lett. 127, 25002 (2019)]

@ Single constant mode - Under the diagonal assumption, and using
the diagram summation applied to the Dyson formulation:

iFo(€)

fo(w, &) = == — a?0 Ocfo(w,€) o = vV2ek|EF|/m

w2 — (X252

where ¢ = (k/a)(v — wl/k).

@ Defining W(w, ) = a?(w? — a?£2) "1, fo(w, €):
RV (w.8) + (Pa™? — €)¥(w,€) = Z0eFo(¢)

closely resembling the equation for parabolic cylinder functions (PCFs):
—£/2
O2n(€) + (2n+1 = E)p(€) =0 1h(€) = ————H,

where PCFs are an orthonormal basis and H,(&) are the Hermite pols.
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@ Analytic solution of the diagonal reduced Vlasov equation:

fB(f, V) = FB(V) + Z
n=0

B Avn(v)[1 — cos(av2n + 1t)]

2n+1

written in terms of PCFs v, and with

/j’,,:/den(v)a‘,FB(v)

N-body sims
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- Analytic sol. well describe resonance position and non-linear spread, but generates corrugation and gradient inversion.
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@ Integration of reduced Vlasov equation: transport eq. 0:fg = 0, T.
In the case of external constant mode: same results.

Dyson w/ constant field Dyson w/ external field
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As soon as we consider the self-consistent mode extracted from
dynamics, the morphology well resembles the numerical simulation.

= Shortcoming of the analytical sol is NOT related to the truncated
expansion, but the constant mode assumption = self-consist. importance.
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Quasi-linear model

@ Approximation level 2:
- fg (and wy) not fast varying in time;
- broad (and dense) spectrum: ), (...) = fk " dk N'(k)(...)
with the spectral density N' = m/Ak (Ak is the spectral width).

@ Self-consistent Dyson eqs (diagonal reduced VP system) rewrite:

e? /\/
Oefo(t,v) = 0, (Dou(t,v)0yfy)  DoL = — ~E(t, V)2
) ) 271'2 2 2
8t|E(ta V)| :2’YQL(t7 V)|E| YL = Twpavfo

— Velocity space: continuous spectrum |E(t, k)| — |E(t,wp/v)| from
the discrete one, specified by resonance conditions (set wy >~ wp).
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e Dimensionless variables - Z(7, u) = |¢|? (spectrum), N' = m/A¢:

O-fg(7,u) = 0, FN@ 8 Io exp[H]]

luz 8,75

O-H(r,u) = W

- Parallel formulation wrt spectral PDE: precise representation of the
discrete simulated mode spectrum (smoothing for 9,7)
- Initial conditions: fg(0, u) = Fg(u), H(0,u) = 0.

@ Spectral evolution:

Z(7,u) = Iy exp[H] Zo = Z(0, u)
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Extension of QL model

[G. Montani, F. Cianfrani, NC, Plasma Phys. Contr. Fusion 61, 075018 (2019)]

o VP reduced system:

Ofy(t,v) = Z |Ex(t)] 8\,(/0tdt' exp [ikv(t/ —t)— i/t:;ywk(y)] Oh(t',v)+ c.c.)

k>0

2 2 oo t t
Ot |Ex]? = %\EkF(/ dv/0 dt’ exp [ikv(t’ —t)— i/dywk(y)]avfo(t’, v) + c.c.)
-0 ¢

@ Integral in dt’ can be rewritten as

'

/d/ f‘:'“i(;ké),)) at,(exp [ikv(t’_t)—i/twk(y)dy]>

@ As QL model: assuming a dense Langmuir spectrum kv = wy [Vv].
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@ Taylor expansion 9, f(t',v) = 0, f(t,v) + (t' — t) 0:0,fo(t, v). We
also assume wy = wp + dwk =~ wp (the exponent is almost vanishing):

/Ot dt’%&t/ (exp [i(t’ — t)0wk — i/t-gwk(y)dyDJr

_ /Ot dt’% exp [i(t’ — t)0wy — i/tgwk(y)dy]

@ As QL model, assuming wj not fast varying in time, the t =0
contribution results to be exponentially small [O'Neil 71]:
o fo(t,v) 0t fo(t, v)
i(kv —wi(t)) (kv — wk(t))?

@ Evolution of the distribution function (before broad spectrum

assumption, 3, (...) = [ dk N(k)(...) with A" = const.):
2
Bcfy = By (Dav(t, v)dufy + Di(t,v)Bedufy)  Dou(t,v)= —5 > \Ekﬁ[ + c.c.]
m

e? 5 1 1 k>0
Di(t,v) = — E,(t +
1(t, v) ’"2;;6' k(1) | [(kv—wkf (kv—w;)2]

i(kv — wg)
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@ Using the same approach, Poisson equation can be restated as:

O Ex(t)[* = 2T 4| Ex|?
Te(t) = 73" + ok

relw +oo 1 1
Sy (t) = ”/ d + 8:0, F;
Y (t) pratl v[(kv_wk)2 (kV7w:)2] : 0y fo

the QL growth rate " is obtained for Im(wx) < wp.

@ The non-resonant contribution to the growth rate §yx can be
evaluated as (details in the PPCF paper:)

4(\f 1)me?wp 9.0,

o —
Tk mk2T

fo‘v:wp/k
@ Equation for Ix:

4(\/2 — 1) rew
=0 X mkzﬁ 2 0eDvfol =/
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@ Using dimensionless variable (barred growth rates are in wp units):

aTFB(T, U) = au(ﬁQLauf_-B) + au(ﬁlaTauFB)
Doi(r,u) = 7NT/u?
Di(7,u) = 6N uT 02(T/u?)

OI(r,u) =2IT

F(r,u) = 71/2 (1 /1 452/7&)

2
_ m™u -
Fo(T,u) = TTIM Oufs
2 — 1)nu? _

Model valid for short times (¢’ — t) < 1 (time scale before flattening:
avoid the divergence in the instantaneous growth rate (7, uv)).

w2 MET, 23rd March 2020 16/23

63 (r,u) =



o Expansion of ['(7, u) for small perturbations, i.e., for 452/'_7%1 <L

F(,u) = 7oL — 8 /3qL

@ Using Z = Z(0, u) exp [fOT 2r (7, U)dT/] and taking the primitive of
the exact differentiation (02/5¢q. ~ 0,In[0.fg]):

i _ <‘3u/::B’)4(\/§—1)/7r
ZoL |0ufs|

During the flattening, 0,z clearly decreases with respect to the
Gaussian initial condition: enhancing of the predicted spectrum
with respect to the QL one.
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Numerical results

@ Reference case: broad spectrum, 45 modes, 7,./75 ~ 0.02.

- QL approximation for Kp = 7../78 < 1: particles feel all spectrum
before trapping time — (random walk); diffusion-like process.
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- Numerically evolved modes (Hamiltonian system) have growth rate values well predicted by the Landau expression.
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o Distribution function: N-body vs. QL model
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- Time delay in the QL evolution: slower formation of the plateau (hypothesis of slow evolution of fy).
- Flattening discrepancy: QL plateau is larger. No fixed set of modes.
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@ Spectral evolution: N-body vs. QL model
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- Field intensity is very small: recover the linear growth of the intensity (standard inverse Landau damping rate).

- QL model is not predictive in the temporal mesoscales: diffusive-like behavior not present in the real simulations.

- Mixed diffusion/convection.

- Diffusive contribution induces a too early termination of the linear regime (spectrum remains at a lower level).

- Flattening width discrepancy: QL spectrum is larger (fixed number of simulated modes).
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@ Spectral evolution: Extended vs. standard QL model

Early temporal mesoscales: extraction of distribution function from the
N-body dynamics (0,fg) to evaluate:
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- Amended spectrum (orange) is significantly close to the numerical one (original QL spectrum in green).
- First order correction to the f slow varying assumption enhance the growth rate: cure the spectral evolution
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Deliverable of WP2
0O Transport analysis

o understand the relaxation dynamics of beam-plasma systems beyond
the oft-used quasi-linear approximation

o investigate the conditions motivating the possible breakdown of the
diffusive style paradigm and a pathway to non-Gaussian, non-diffusive
transport, abandoning the familiar quasi-linear picture of diffusion on
the asymptotic time scales

o develop simplified EP transport models in support of whole device

modeling

— Proposed an extension of QL model: cross-coupling terms among
spectral components are still neglected (possible revised picture (?)).

— Importance of convective transport (breakdown of diffusive paradigm)
also addressed in the comparison wrt HAGIS-LIGKA sims.

— 1D transport module (almost) fully addressed. Help in defining
peculiar physics for the general scheme (i.e., spectral self-consistency).
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O Numerical implementation of PSZS transport equations{ WP2.1)
o development of transport module (1D space; 2D GK vel. space) for
phase space transport analysis

o Best solution to be discussed by MET Team (modification of existing
module? new one?): novel aspect is explicit implementation of fluxes
in the EP phase space and of corresponding evolution of the fluctua-
tion spectrum with multi-level approach (WP1 and WP3; AWECS).

o Implementation of general geometry in AWECS

— First approximation level started with HMGC code (Falessi talk).
— Numerical implementation of the flux transport equation.

— FALCON to calculate parallel mode structure (Falessi talk).
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