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Outline
1 Gyrokinetic code ORB5.

2 Experimental profiles from the NLED-AUG case:
I Study of the damping mechanisms in linear simulations.

F Only = = 1

F Linear simulations

F All species have Maxwellian distribution functions.

I Study of the interaction between Egams and Alfvén waves.
F = = 0, 1

F Nonlinear simulations.

F EPs have two bumps-on-tail distribution function.

3 Implementation of Slowing down distribution function in ORB5 and
initial tests.
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ORB5

ORB51 is a global, nonliner, gyrokinetic, electromagnetic, PIC code
which can take into account collisions and sources.

The Vlasov-Maxwell gyrokinetic equations are derived through
variational principles from a gyrokinetic Lagrangian. Field equations
are derived via functional derivatives.

The distribution function is discretized through numerical particles
(markers). The fields are discretized through cubic B-splines.

The gyrokinetic model of ORB5 contains the reduced MHD as
subset2.

1E. Lanti et al. “Orb5: A global electromagnetic gyrokinetic code using the PIC
approach in toroidal geometry”. In: Computer Physics Communications (2019).

2Naoaki Miyato et al. “A Modification of the Guiding-Centre Fundamental 1-Form
with Strong ExB Flow”. In: Journal of the Physical Society of Japan (2009).
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NLED-AUG case
The shot number #31213 of ASDEX-Upgrade (AUG) has been
selected within the Non-Linear Energetic-particle Dynamics (NLED)
Eurofusion enabling research project.

Here an early off-axis NBI (Injection energy∼ 93 :4+)
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Equilibrium

Density profiles involved satisfy
quasi-neutrality condition.

EPs when considered have flat
temperature profile.
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Study of the damping

Linear simulations and nonlinear simulations, = = 1.

Equilibrium distribution function for all the species: Maxwellian

Different shape for the EPs density involved:

1 Off-axis profile

2 On-axis profile

Electron Landau damping dominant for a TAE in this regime3.

3F. Vannini et al. “Gyrokinetic Investigation of the damping channels of Alfvén
modes in ASDEX Upgrade”. In: Physics of Plasmas (2020, accepted).
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Two Bumps-on-tail
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Keeping only = = 0, EGAMS have been studied with ORB5 in4.
4Ivan Novikau et al. “Implementation of energy transfer technique in ORB5 to study

collisionless wave-particle interactions in phase-space”. In: Computer Physics
Communications (2019 accepted).
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Interaction Egams and Alfvén waves

Retained both = = 0, 1.

Nonlinear simulations.

Two bumps-on-tail distribution function for the EPs.

9 / 15



Interaction Egams and Alfvén waves

Retained both = = 0, 1.

Nonlinear simulations.

Two bumps-on-tail distribution function for the EPs.

n=0

9 / 15



Interaction Egams and Alfvén waves

Retained both = = 0, 1.

Nonlinear simulations.

Two bumps-on-tail distribution function for the EPs.

n=1

9 / 15



Interaction Egams and Alfvén waves
Retained both = = 0, 1.

Nonlinear simulations.

Two bumps-on-tail distribution function for the EPs.

n=1

5 = q4−W C 51 = ℱ( 5 /<0GA ( 5 )) 52 = 51/<0GA ( 51)
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Frequency Spectra

n=1 m=-2

Figure: Linear phase Figure: Nonlinear Phase
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Frequency Spectra

n=1 m=-3

Figure: Linear phase Figure: Nonlinear Phase
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Frequency Spectra

n=0 m=0

Figure: Linear phase Figure: Nonlinear Phase
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Slowing down distribution function

Solution of the Fokker-Planck equation in high-speed limit for an
isotropic source.
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Slowing down distribution function

Initial tests considering magnetic equilibrium and profiles taken from
the ITPA-TAE international benchmark case5:

Flat densities and temperature
profiles, n = 0.1.

0 = 1<, '0 = 10<, �0 = 3)

@ = 1.71 + 0.16 · (A/0)2

With Maxwellian, most unstable
mode = = 6, < = −10,−11

5A. Könies et al. “Benchmark of gyrokinetic, kinetic MHD and gyrofluid codes for
the linear calculation of fast particle driven TAE dynamics”. In: Nuclear Fusion (Oct.
2018), p. 126027.
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Slowing down distribution function
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Slowing down distribution function
ITPA-TAE benchmark case

Figure: 5 (v‖ , ` = 0)

A = 0.5 W [l�0] l [l�0]
Maxwellian 0.0317 −0.285
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Slowing down distribution function
ITPA-TAE benchmark case

Figure: 5 (v‖ , ` = 0) Figure: Mode structure

A = 0.5 W [l�0] l [l�0]
Maxwellian 0.0317 −0.285

vU = 30 vCℎ,�% 0.0156 −0.276
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Conclusions

Alfvén modes in AUG investigated for the first time with ORB5 with
experimental magnetic equilibrium and experimental profiles.

Study of the damping mechanisms affecting Alfvén waves
([Vannini-2020], accepted in Physics of Plasmas).

Study of the interaction between Egams and Alfvén waves
(collaboration I. Novikau).

Slowing down distribution function implemented in ORB5. Initial test
started.

Next Steps:

Benchmark with HYMAGYC and MEGA (see talk of G. Vlad)

Comparison with GFLDR (general fishbone-like dispersion relation).
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