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EP transport equation: purpose statement

We aim at providing the general expressions describing EP dynamics on long time
scales (transport) and at introducing a framework to solve these equations within
different levels of reduced dynamics.

By means of this approach it will be possible to:

describe the physics of next generation fusion experiments where alpha particles
will play a key role;
characterize cross-scale couplings in burning plasmas.
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EP Transport equations: multiple scales analysis

A multiple scales approach has been applied to extend gyrokinetic simulations to
long time scales, see e.g. Trinity;
macro-scales characterize radial plasma profiles, i.e. L, τT , while micro-scales
describe the “fast” variation of physical quantities, i.e. ρL, ω−1;
transport equations for radial profiles are derived by means of a systematic
separation of scales between macroscopic equilibrium and fluctuations.
intermediate spatio-temporal scales are suppressed. Is it possible to use the
same approach retaining meso-scales produced by the dynamics?;
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EP Transport equations: why meso-scales are important?

Meso-scales on ITER . . .
peculiar feature of ITER: interplay of meso-scale structures with micro-scales
generated by energetic particles, i.e. ρLE ∼ (ρLL)1/2;
unique role of energetic particles, which act as mediators between the micro- and
the macro- scales;

. . . and DTT (Divertor Tokamak Test facility)

TE/Ti ∼ (4ρ∗)−1 ⇒ ρLE ∼ (ρLL)
1/2 with dimensionless parameters close to

ITER;
using minority heating by ICRH and/or NBI, cross-scale couplings should be
similar;

need for transport equations for the mesoscales of the system;
non Maxwellian distribution functions must be taken into account;
meso-scales do not emerge only due to EP physics, e.g. ITBs, L-H transitions;
the derivation, see Falessi 2017; Falessi and Zonca 2019, is based on the theory
of Phase space zonal structures, see Chen and Zonca 2016.
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EP Transport equations: ordering assumptions

In the core the plasma is magnetized,
thus:

f = F0+δf ρL∇ lnF0 ∼ ρL/L ∼ O(δ)� 1;

following Hinton and Hazeltine 1976,
Frieman and Chen 1982, we describe
slowly varying reference states, e.g.
ω−1∂t ln p0 ∼ O(δ2);
The reference magnetic field is:
B0 = F∇φ+ ∇φ×∇ψ;
We introduce the following gyrokinetic
ordering for fluctuating quantities:

cE

Bvth
∼ |∂/∂t|
|Ω|

∼
∣∣∣∣δBB

∣∣∣∣ ∼ ∇‖
∇⊥

∼
k‖

k⊥
∼ O(δ).

Figure: Courtesy of Y. Xiao et al., PoP 2015.
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EP Transport equations: toroidal symmetric particle
response

Considering ∂µF̄0 = 0, and the low−β tokamak ordering, we define the zonal
structure response (with null toroidal mode number):

δfz = e−ρ·∇δḠz +
e

m
δφz

∂F̄0

∂E

δḠz evolves according to the nonlinear gyrokinetic equation, see Frieman and
Chen 1982; Brizard and Hahm 2007:(
∂t + v‖∇‖ + vd ·∇

)
δḠz = − e

m

∂F̄0

∂E
∂

∂t
〈δψgc〉z −

c

B0
b×∇ 〈δψgc〉 ·∇δḠ

∣∣∣∣
z

where 〈δψgc〉z = Î0
(
δφz −

v‖
c δA‖z

)
+ m

e µÎ1δB‖z.

starting from this expression we will derive an equation describing the transport
of particles up to the energy confinement time.
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EP Transport equations: drift/banana center decomposition

Introducing the (drift/banana center) decomposition δḠz = e−iQzδḡz and
imposing:

Qz = F (ψ)

[
v‖

Ω
−
(v‖

Ω

)] kz
dψ/dr

where kz ≡ (−i∂r), [. . .] ≡ τ−1
b

∮
d`
v‖

[. . .] is the bounce average

we obtain the following equation for δḡz:(
∂t + v‖∇‖

)
δḡz = eiQz

(
− e

m

∂F̄0

∂E
∂

∂t
〈δψgc〉z −

c

B0
b×∇ 〈δψgc〉 ·∇δḠ

)
.

the requirement for the phase space zonal structure to be long lived imposes that
∇‖δḡz = 0;
therefore δḡz must be toroidally symmetric and characterized by m = 0;
the equation becomes:

∂tδḡz =

[
eiQz

(
− e

m

∂F̄0

∂E
∂

∂t
〈δψgc〉z −

c

B0
b×∇ 〈δψgc〉 ·∇δḠ

)]
.
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EP Transport equations: density transport

Re-writing the low frequency (transport) component of δfz in term of δḡz, taking
the time derivative of the surface averaged velocity integral (see Falessi 2017;
Falessi and Zonca 2019), we obtain the following:

∂t 〈〈δfz〉v〉ψ =
e

m

〈[
1−

(
e−iQz Î0

)(
eiQz Î0

)] ∂F̄0

∂E
∂tδφz

〉
v

+

− 1

V ′
∂

∂ψ

〈〈
V ′
(
e−iQz Î0

)[
ceiQzR2∇φ ·∇ 〈δψgc〉 δḠ

]〉
v

〉
ψ

this equation describes the radial oscillations on any length-scale of the density
profile in the absence of collisions and assuming GK ordering;
mesoscales are spontaneously created by turbulence;
reference state is never assumed to be Maxwellian.
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EP Transport equations: results (WP 1)

we have effectively redefined plasma reference state including mesoscales
spontaneously produced by the dynamics and derived the related phase space
transport equations;
results known in literature are recovered considering the special case of long
wavelength PSZS and Maxwellian reference state;
theoretical framework able, in principle, to describe the peculiar role of energetic
particles on DTT and ITER;
main results are summarized in a couple of PoP papers: Falessi and Zonca
2019; Falessi and Zonca 2018;
PSZS and their electromagnetic counterparts allow to define the concept of zonal
state . . .
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Zonal state: orbit averaging

particle motion in the reference magnetic field is characterized by three integrals
of motion, i.e. Pφ, µ, E ;
the phase space zonal structure equation is connected with the macro- meso-
scopic component, i.e. [. . .]S , unperturbed orbit-averaged distribution function
(Falessi et al. 2019b):

∂

∂t
Fz0 +

1

τb

[
∂

∂Pφ

(
τbδṖφδF

)
z

+
∂

∂E

(
τbδĖδF

)
z

]
S

=

(∑
b

Cgb [F,Fb] + S

)
z S

where (...) = τ−1
b

∮
dθ/θ̇ (. . .) =

∮
dθ/θ̇ eiQ(. . .)(ψ̄, θ), with τb =

∮
dθ/θ̇ and

ψ = ψ + δψ̃(θ);
this is equivalent to bounce averaging a quantity shifted with the eiQz operator;

this expression describe transport processes in the phase space due to
fluctuations or collisions and sources;
transport equations for n,P . . . can be obtained integrating in the velocity space,
i.e. E , µ, α with proper weights;
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Zonal state: neighboring nonlinear equilibria

we can decompose the toroidally
symmetric distribution function;
PSZS, i.e. Fz0, from orbit averaging
describe macro- & meso-scales;
micro-scales are accounted by δF̄z;

they describe system transitions
between neighboring nonlinear
equilibria, see Chen and Zonca 2007;
Falessi and Zonca 2019;
nonlinear equilibria, together with
zonal fields, form a zonal state, see
Falessi and Zonca 2019.

Fz = Fz0 + δFz + δF̃z
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Zonal state: governing equations

∂

∂t
Fz0 +

1

τb

[
∂

∂Pφ

(
τbδṖφδF

)
z

+
∂

∂E

(
τbδĖδF

)
z

]
S

= Cgz0 + 〈S̄〉S

expanding the collision operator we obtain:

C̄gz0 = Cgz
[
F z0, F z0

]
+
〈
Cgz
[
F z0, δFz

]
+ Cgz [δF, δF ]

〉
S

first term balance 〈S̄〉S while the second, in the presence of a Maxwellian
reference state, describes neoclassical transport;
corrections to neoclassical transport are given by the first and the third terms;

∂

∂t
δF z +

1

τb

[
∂

∂Pφ

(
τbδṖφFz0

)
z

+
∂

∂E

(
τbδĖFz0

)
z

]
+

+
1

τb

〈
∂

∂Pφ

(
τbδṖφδF

)
z

+
∂

∂E

(
τbδĖδF

)
z

〉
F

= Cgz − Cgz0 + 〈S̄〉F
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Zonal state: governing equations

Computing the zonal state require equations for zonal fields, i.e. the long lived
component of toroidal symmetric fields;
following Chen and Zonca 2016, they are obtained from:

∑〈
e2

m

∂F̄0z

∂E

〉
v

δφz+∇ ·
∑〈

e2

m

2µ

Ω2

∂F̄0z

∂µ

(
J2

0 − 1

λ2

)〉
v

∇⊥δφz +
∑
〈eJ0(λ)δGz〉v = 0

∂

∂t
δA‖z =

(
c

B0
b×∇δA‖ ·∇δψ

)
z

∇⊥δB‖z = κ0δB‖z +∇‖δB⊥z +∇b0 · δB⊥z +
4π

c
δJ⊥z

where δGz = δFz − e
m
∂F̄0

∂E 〈δψgcz〉 and Jz is expressed in terms of Fz using its
push-forward representation, see Brizard and Hahm 2007.
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Zonal state: recent developments (WP 1)

PSZS are a possible definition of nonlinear equilibrium and together with zonal
fields and residual orbit averaged particle response they define the zonal state;
this definition is particularly important in collisionless burning plasmas, where
one cannot always describe transport via evolution of macroscopic radial profiles
of a reference Maxwellian;
phase space transport equations in the presence of collisions and sources have
been formulated in terms of orbit average;
the theoretical framework has been presented at the EPS Conference on Plasma
physics, AAPPS Conference on Plasma physics, 2nd Trilateral EP Workshop and
at the Italian National Conference on the Physics of Matter;
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Zonal state: future developments (WP 1)

include explicit expressions for orbit averaged sources and collisions;
derive a closed set of equations (once n 6= 0 fluctuations are given) describing
the zonal state evolution;
apply the framework to describe EGAM dynamics;
main results will be summarized in a NJP paper;
two contributions will be presented: at the IAEA FEC 2020 and at Varenna;
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Hierarchical approach: transport module

A transport module will be required to find the numerical solution of phase space
transport equations in the presence of collisions and sources. This problem is 1D
in space and 2D in velocity space instead of 5D;
the transport module must be capable of handling different level of reduced
dynamics, i.e. different expressions for the fluxes calculated from the output of a
kinetic code;

the zeroth level of simplification consist in the gyrokinetics description of plasma
dynamics;
the first level of simplification consist in assuming |ω| � τ−1

NL ∼ γL;
the second and final level of simplification is the Quasilinear model.
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Hierarchical approach: transport module

e.g. retaining only the effect of non linear diagonal interactions, see Zonca et al.
2015, consistent with |ω| � τ−1

NL ∼ γL, we obtain:

∂tF z0 ∼
n2c2

2
=m

∑
k

∂

∂ψ

[
e−iQ 〈δψgc〉k eiQ

∣∣∣∗
ψ
P−1
k eiQ 〈δψgc〉k e−iQ

∣∣∣
ψ

∂

∂ψ
F z0

]
where(. . .)|ψ denotes orbit averaging, P−1

k is the inverse of the operator
Pk ≡ ωdk − ωk − i∂t + i∆ . . ..

by a systematic comparison, a validated reduced model of particle and energy
transport will be obtained where the essential underlying physics may be
identified and understood;
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Hierarchical approach: recent developments (WP 2)

PSZS have been extracted from an EPM simulation by the HMGC hybrid code,
i.e. see Briguglio et al. 1995. Phase Space fluxes have been validated;

∂

∂t
Fz0 +

1

τb

[
∂

∂Pφ

(
τbδṖφδF

)
z

+
∂

∂E

(
τbδĖδF

)
z

]
S

= 0
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Hierarchical approach: future developments (WP 2)

use PSZS as initial condition for a new GK simulation, e.g. with
HMGC/HYMAGYK;
solve PSZS equation in the (E , µ, Pφ) space using/developing a Fokker Planck
code;
evaluate fluxes using analytical expressions and a code solving a reduced model;
understand how this workflow could be implemented in the European Transport
Solver;
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FALCON code: theoretical framework

In the F(loquet)AL(fvén)CON(tinuum) code, following Chen and Zonca 2016,
Falessi et al. 2019a, continuous spectra are obtained from vorticity and pressure
equations when |ϑ| → ∞;

(
∂2
ϑ −

∂2
ϑ|∇r|
|∇r|

+
ω2J2B2

0

v2
A

)
y1 = (2Γβ)1/2κg

J2B0B0

qR0

sϑ

|sϑ|
y2(

1 +
c2s
ω2

1

J2B2
0

∂2
ϑ

)
y2 = (2Γβ)1/2κg

B0

B0
qR0

sϑ

|sϑ|
y1

where:

y1 ≡
φ̂s(

βq2
)1/2 ckϑ

B̄0R0
, y2 ≡ i

δP̂comp
(2Γ)1/2P0

,

φ̂s(r, ϑ) ≡ |sϑ||∇r|Φ̂s(r, ϑ), s = rq′/q is the magnetic shear, kϑ = −nq/r,
β = 8πΓP0/B

2

0, Φ̂s and δP̂comp(r, ϑ) are the representation of the perturbed
stream function and the compressional component of the pressure perturbation
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FALCON code: theoretical framework

linear system of second order ODEs with periodic coefficients;
Floquet theory demonstrate that it must have solutions in the form:

xi = eiνiϑPi(ϑ)

where Pi is a 2π-periodic function i = 1, 2, 3, 4 and the νi are the characteristic
Floquet exponents.

Solving the system for a given r thus calculating νi for each ω we obtain:

νi = νi(ω, r)

this relation involves only local quantities and describes wave packets
propagation along magnetic field lines;
continuous spectra can be computed for arbitrary n, once the dispersion curves
νi = νi(ω, r) are given;
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FALCON code: SAW continuous spectrum

Using ν2
i (Ω, r) = (nq(r)−m)2 we obtain the SAW continuous spectrum as a

function of r/a;
comparison with the spectrum calculated by MARS code.
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FALCON code: SAW continuous spectrum

the evaluation of the continuous spectrum for different toroidal mode numbers is
immediate.
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FALCON code: benchmark with MARS code

continuous spectra are compared with results obtained by MARS;
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FALCON code: SAW-ISW continuous spectrum

complex structures of the continuous spectrum are further illustrated by adding
n = 10 and n = 20 toroidal mode numbers;
as stated in Chen and Zonca 2017, characterize fluctuations (in particular) in the
BAAE frequency range requires to calculate polarization;
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FALCON code: polarization

Any fluctuation (antenna driven and/or eigenmode) with short scale (large- η)
radial structure satisfy the same equations;
therefore is a linear superposition of Floquet solutions and is characterized by its
own polarization;
mode polarization is crucial in order to assess the actual coupling with the
continuous spectrum and resonant absorption;
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FALCON code: recent developments (WP 2)

0.4 0.6 0.8
r/a

0.1

0.2

0.3

n = 2

0.0

0.2

0.4

0.6

0.8

1.0

structures near plasma edge are substantially acoustic, i.e. strongly damped;
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FALCON code: recent developments (WP 2)
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FALCON can now calculate continuous spectrum within the Slow sound
approximation. Dashed line represent iso-lines of Π = ρ̂m0/Γβ. SAW continuous
spectrum is plotted in blue;
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The three different level of approximation can be compared;
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FALCON code: future developments (WP 2)

FALCON will be extended to calculate MHD parallel mode structures, i.e. the first
step towards the derivation of reduced nonlinear evolution equations for Alfvénic
fluctuations;
the code is being moved to a GitLab repository which, for the moment, will be
accessible only from ENEA;
an application of the code to a DTT scenario has already been published on PoP,
i.e. Falessi et al. 2019a;
an article describing FALCON main features will be submitted to JPP in the next
days;
we are working on extending the code to include kinetic effects and 3D/stellarator
geometry;
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Thank you for your attention.
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