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Modelling Inertial Confinement Fusion

e Experiments are hard to design and analyse due to complexity
e Codes rely on empirical tuning factors

e |ICF requires predictive codes to explore wider
parameter space

e \We are developing a model for laser-plasma
instabilities to be included in
radiation-hydrodynamics codes



Laser Plasma Instabilities in Direct Drive

o LPI

o Reduce drive efficiency

o Absent from implosion
simulations

e QOur Models

o Focused on
computational efficiency

o Based on linear theory
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LPI evaluation

e (Growth rates depend on plasma profiles
along ray paths

e Steady state LPI levels calculated at each
timestep of hydrocode

e Return non-linear LPI effects to hydrocode

o Ray depletion
o Hot electrons
o Electron and ion heating




Stimulated Raman Scattering
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Convective Stimulated Raman Scattering
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Convective Stimulated Raman Scattering
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Convective Stimulated Raman Scattering
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e Sum the scattered light waves
to find reflectivity
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Convective Stimulated Raman Scattering
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e Deplete ray by conserving the
quanta (photon, plasmon)
density in each wave
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Physics applied to each ray

Absorption processes

Inverse bremsstrahlung (IB)
SRS
SBS
TPD

LPI saturation mechanisms

e Dephasing
e |angmuir decay instability
e Pump depletion



Map of incident ray power

Power map for incident ray

e Power maps are the summed -
power of rays in each cell

e Here we are only considering
rays up to their turning point
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e lterate over the whole map for
non-linear LPI depletion of laser

8
Power (GW)

20

10




Ray power maps

Power map for incident ray

Power map for ray with IB absorption
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Outer radial layer of power maps
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Power entering
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Power entering
the grid
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Power entering
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Power entering e 2% of beam power refracted out
the grid

1010
of plasma

e 65% absorbed by IB
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Incident ray power maps

Power map for ray with IB absorption Power map for ray with IB, SRS & SBS
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Summary

e \We are developing a ray based LPI model
e It functions with 3D ray paths

e Using pump depletion, dephasing and Langmuir
decay to saturate instabilities

e lterative solution for nonlinear pump depletion

e Next we will benchmark by simulating
experiments

e Implement in rad-hydro code in the future
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