Laser-driven quasi-static magnetic fields for magnetized high energy-density experiments

Christos Vlachos

christos.vlachos@u-bordeaux.fr

ECLIM 2022

September 21 – Frascati, Italy

Collaborators

CELIA – U. Bordeaux

- P. Bradford ٠
- J.J. Santos ٠
- V. Tikhonchuk ٠
- P. Guillon ٠

U. Las Palmas de Gran Canaria

R. Florido ٠

U. Valladolid

- M. A. Gigosos ٠
- G. Pérez-Callejo

PIIM – U. Aix-Marseille

- A. Calisti ٠
- S. Ferri

LLNL

- M. Sherlock ٠
- C. A. Walsh .

U. California San Diego

- M. Bailly-Grandvaux •
- F. Beg ٠
- J. Saret

General Atomics

C. McGuffey **Imperial College London**

F. Suzuki-Vidal

U. of York

- N. Woolsey **Princeton Plasma Physics Laboratory** •
- S. Malko ٠

University of Alberta

- C. Kaur
- M. Gjevre
- R. Fedosejevs

Institute of Plasma Physics and Laser Microfusion, Warsaw

- T. Pisarczyk
- T. Chodukowski
- Z. Rusiniak
- M. Rosinski

Institute of Plasma Physics, Czech Academy of Sciences, Prague

- M. Krupka
- R. Dudzak
- T. Burian
- J. Dostal

LULI - Ecole Polytechnique

- S. Eitan
- B. Albertazzi
- M. Koenig CEA, DAM, DIF
 - X. Vaisseau
 - L. Gremillet

CLPU-Salamanca

- M. Ehret L. Volpe
 - ٠

Magnetized implosions

LMJ platform

 High B-fields (10 kT can be reached departing from a relatively low seed B-field) grant access to an unexplored MHD regime

Why to use coils in the LMJ platform?

- There is not an external pulsed power coil system at present in LMJ and probably during the next 5 years
- The laser driven coils don't block the line of sight for other diagnostics of the experiment

Prediction validation:

- Several kJ energy and 3ω light is a new regime for the laser driven coils.
- We performed some promising first tests at LULI and Omega facilities but in general this regime is not accessible in facilities smaller than LMJ.

LDCs in 1w light and sub-kJ energies (LULI, May 2021)

Typical results from axial proton probing

LDCs in 1w light and sub-kJ energies (LULI, May 2021)

Typical results from perpendicular proton probing

LULI experimental results

Target	Laser							
Inductance L [nH]	Pulse duration $ au$ [ns]	Energy [kJ]	Wavelength λ [μm]	Irradiance Iλ ² [W cm ⁻² µm ²]				
3.7	1	0.5	1.053 (ω ₀)	6x10 ¹⁵				

christos.vlachos@u-bordeaux.fr

LULI

Modeling B-field generation in laser driven coils

Diode current limited by space charge

 \rightarrow Laser maintains a voltage and drives a current across the gap

$$I_d = I_0 \exp(-eV_c/T_h)$$

i) $t < d/v_i \sim 200 \text{ ps}$: Space charge limits electron current in vacuum

Tikhonchuk *et al.*, Phys. Rev. E **96**, 023202 (2017) Williams et al, J. Appl. Phys. 127, 083302 (2020)

Diode current limited by space charge

- → Laser maintains a voltage and drives a current across the gap $I_d = I_0 \exp(-eV_c/T_h)$
- → Ion inertia determines two regimes for the laser-driven diode

Diode current also limited by self-consistent magnetization

Plasma diode

$d \sim 1 \text{ mm}$

Limits for the diode current :

• Magnetization limit at low voltage

$$I_m \approx rac{V_c}{Z_d}$$
 with $Z_d = \sqrt{rac{\mu_0}{\epsilon_0}} rac{\lambda_{Dh}d}{\pi r_p^2}$

When current-carrying electrons don't pinch before the anode

• Space-charge limit at high voltage

 $I_d = I_0 \exp(-eV_c/T_h)$

Plasma compensates the charge of current-carrying electrons

Current-voltage characteristic of the laser-driven diode

LULI experimental results and modeling

Current evolution in laser-driven coils from the <u>diode-source model</u> (curves) and recent <u>benchmarking data</u> (symbols)

LDCs in 3w light and several kJ energies (Omega, 2021)

* M. Ehret, Master Proposal, Universite de Bordeaux, 10.13140 (2015)

Omega experimental results and modeling

Current evolution in laser-driven coils from the <u>diode-source model</u> (curves) and recent <u>benchmarking data</u> (symbols)

 $\textcircled{B} UV \text{ laser drive } \Rightarrow T_h \propto I_L \lambda_L^2 \ \texttt{S}$ $\textcircled{B} \text{ Geometrical constraints } \Rightarrow L \nearrow$

Summary and Conclusions

	Target	Laser			
	Inductance L [nH]	Pulse duration $ au$ [ns]	Energy [kJ]	Wavelength λ [μm]	Irradiance Iλ ² [W cm ⁻² µm ²]
LULI	3.7	1	0.5	1.053 (ω ₀)	6x10 ¹⁵
OMEGA	6.5	1.5	2	0.351 (3ω ₀)	1.2x10 ¹⁵
LMJ	13	3 and 6	13.5	0.351 (3ω ₀)	5x10 ¹⁴ and 2.5x10 ¹⁴

- → In facilities without external pulsed power, laser-driven coils (LDC) are an alternative to magnetize laser-plasma experiments in an open-geometry for lasers and diagnostic access, with small production of debris
- → Use of LDC in ns and large-scale experiments is more challenging (larger volumes, lower fields, B-field pulse comparable to the physics time-scale)
 - Adapt laser drive duration to target inductance
 - Harsh conditions linked to laser-target interaction and generated plasma need specific care

model data

model

data

model

Thank you !