

X-ray synthetic diagnostics for laser-driven implosions 36th European Conference on Laser Interaction with Matter

F. Barbato¹, L. Savino¹, S. Atzeni¹

¹Dipartimento SBAI, Universita di Roma "La Sapienza", Italy

Frascati 19-23 September 2022

- 1. Motivation & Aims
- 2. Synthetic diagnostics

1. Motivation & Aims

laser-plasma modelling

Laser-plasma modelling

Provides quantities like temperature, pressure, density...

laser-plasma modelling

experiment

Laser-plasma modelling

Provides quantities like temperature, pressure, density...

Experiment

We cannot measure the simulated quantities directly and independently

Laser-plasma modelling

Provides quantities like temperature, pressure, density...

Experiment

We cannot measure the simulated quantities directly and independently

laser-plasma modelling

synthetic diagnostics

experiment

Synthetic diagnostic

- diagnostic development
- experiment design
- data analysis

Aims

Synthetic diagnostic

- diagnostic development
- experiment design
- data analysis

Aims

Synthetic diagnostic

- diagnostic development
- experiment design
- data analysis

2. Synthetic diagnostics

- 2.1 PhaseX
- 2.2 EmXI

Phasex

Back-lighted imaging

- X-ray Absorption Contrast Imaging (XACI)
- X-ray Phase Contrast Imaging (XPCI)

Phasex

Back-lighted imaging

- X-ray Absorption Contrast Imaging (XACI)
- X-ray Phase Contrast Imaging (XPCI)

Emission imaging

- Framing camera
- Streak camera
- Spectral emissivity (qualitatively)

2. Synthetic diagnostics

- 2.1 PhaseX
- 2.2 EmXI

PhaseX*

*F. Barbato, et al. Optics Express 30.3 (2022)

- Python + FORTRAN (OpenMP)
- ray + wave optics

Refractive index

$$n = 1 - \delta + i\beta = n^* + i\kappa$$

- solid-cold
- pure phase $(n = n_e/(2n_c))$
- warm
- hybrid

Ray-optics → **Complex wave**

- projection approximation $(\sqrt{T\lambda})$
- 1, 2, 3 dimensions object
- mono/poly-chromatic

Wave-optics \rightarrow Image

- Fresnel-Kirchoff in the Fourier space
- cone/collimated beam
- system resolution

F. Barbato, et al. Optics Express 30.3 (2022)

- Python + FORTRAN (OpenMP)
- ray + wave optics

Refractive index

$$n = 1 - \delta + i\beta = n^* + i\kappa$$

- solid-cold
- pure phase $(n = n_e/(2n_c))$
- warm
- hybrid

Ray-optics → **Complex wave**

- projection approximation $(\sqrt{T\lambda})$
- 1, 2, 3 dimensions object
- mono/poly-chromatic

Wave-optics → Image

- Fresnel-Kirchoff in the Fourier space
- cone/collimated beam
- system resolution

F. Barbato, et al. Optics Express 30.3 (2022)

- Python + FORTRAN (OpenMP)
- ray + wave optics

Refractive index

$$n = 1 - \delta + i\beta = n^{\star} + i\kappa$$

- solid-cold
- pure phase $(n = n_e/(2n_c))$
- warm
- hybrid

Ray-optics \rightarrow **Complex wave**

- projection approximation $(\sqrt{T\lambda})$
- 1, 2, 3 dimensions object
- mono/poly-chromatic

Wave-optics \rightarrow Image

- Fresnel-Kirchoff in the Fourier space
- cone/collimated beam
- system resolution

F. Barbato, et al. Optics Express 30.3 (2022)

- Python + FORTRAN (OpenMP)
- ray + wave optics

Refractive index

$$n = 1 - \delta + i\beta = n^{\star} + i\kappa$$

- solid-cold
- pure phase $(n = n_e/(2n_c))$
- warm
- hybrid

Ray-optics \rightarrow **Complex wave**

- projection approximation $(\sqrt{T\lambda})$
- 1, 2, 3 dimensions object
- mono/poly-chromatic

Wave-optics → Image

- Fresnel-Kirchoff in the Fourier space
- cone/collimated beam
- system resolution

F. Barbato, et al. Optics Express 30.3 (2022)

Benchmark

• L. Antonelli, et al.

"X-ray phase-contrast imaging for laser-induced shock waves." EPL (Europhysics Letters) 125.3 (2019)

 F. Barbato, et al.
 "Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source."
 Scientific reports 9.1 (2019)

Benchmark

- L. Antonelli, et al.
 "X-ray phase-contrast imaging for laser-induced shock waves."
 EPL (Europhysics Letters) 125.3 (2019)
- F. Barbato*, et al.*

"Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source." Scientific reports 9.1 (2019)

Work in progress...

Planar shock @ OMEGA In collaboration with L. Antonelli *et al.* at Uni. of York

PhaseX: possible applications

Perturbations

Interaction of a laser-driven shock-wave with an obstacle

F. Barbato, et al. Optics Express 30.3 (2022)

Dynamic shell formation*

The shell is created by irradiating a foam sphere with a specific pulse shape

- radius 320 μm
- density 0.15 g/cc

*V. Goncharov, et al Physical Review Letters 125.6 (2020)

Dynamic shell formation*

The shell is created by irradiating a foam sphere with a specific pulse shape

- radius 320 μm
- density 0.15 g/cc

*V. Goncharov, et al Physical Review Letters 125.6 (2020)

PhaseX: possible application

Non-ideal case

The target is irradiated with a non-uniform laser illumination

In collaboration with V. Goncharov et al @ LLE

PhaseX: possible application

Non-ideal case

The target is irradiated with a non-uniform laser illumination

In collaboration with V. Goncharov et al @ LLE

PhaseX: possible application

Non-ideal case

The target is irradiated with a non-uniform laser illumination

In collaboration with V. Goncharov et al @ LLE

2. Synthetic diagnostics

- 2.1 PhaseX
- 2.2 EmXI

EmXI

Code

- Python + FORTRAN (OpenMP)
- ray optics

Ray-optics

- $dI = -\mu_{\nu}I_{\nu} + \mu_{\nu}(exp(-u))I_{\nu} + j_{\nu}$
- thermodynamic equilibrium
- pinhole, slit
- system resolution

Fools

- 2D framing camera
- streak-camera
- spectral analysis*

*It depends on the multigroup opacity tables

Code

- Python + FORTRAN (OpenMP)
- ray optics

Ray-optics

- $dI = -\mu_{\nu}I_{\nu} + \mu_{\nu}(exp(-u))I_{\nu} + j_{\nu}$
- thermodynamic equilibrium
- pinhole, slit
- system resolution

Fools

- 2D framing camera
- streak-camera
- spectral analysis*

*It depends on the multigroup opacity tables

Code

- Python + FORTRAN (OpenMP)
- ray optics

Ray-optics

- $dI = -\mu_{\nu}I_{\nu} + \mu_{\nu}(exp(-u))I_{\nu} + j_{\nu}$
- thermodynamic equilibrium
- pinhole, slit
- system resolution

Tools

- 2D framing camera
- streak-camera
- spectral analysis*

*It depends on the multigroup opacity tables

EmXI: streak scheme

target

slit

streak camera

Dynamic shell formation

A scaled-down proof-of-principle, on the formation of a dense shell from a laser irradiated homogeneous-foam shell. Experiment performed at OMEGA on Aug. 9, 2022*

- radius 320 μm
- density 0.144 g/cc

^{*}Foamball collaboration LLE: W. Theobald, I. V. Igumenshchev, V. N. Goncharov, C. Stoeckl, R. Shah, D. Bishel, D. Chin, L. Ceurvors, W. Trickey, N. Shaffer; CELIA: A. Colaitis

Dynamic shell formation

A scaled-down proof-of-principle, on the formation of a dense shell from a laser irradiated homogeneous-foam shell. Experiment performed at OMEGA on Aug. 9, 2022*

- radius 320 μm
- density 0.144 g/cc

*Foamball collaboration LLE: W. Theobald, I. V. Igumenshchev, V. N. Goncharov, C. Stoeckl, R. Shah, D. Bishel, D. Chin, L. Ceurvors, W. Trickey, N. Shaffer; CELIA: A. Colaitis

Streak*

Time emission along the target diameter

*Foamball collaboration

Streak*

Time emission along the target diameter

*Foamball collaboration

Target

Time resolved spectral emission of the target with and without spectral response

Target

Time resolved spectral emission of the target with and without spectral response

To summarise

Phase Hm

Modular design

Both codes have a modular design, they can be easily adapted to simulate different diagnostics, setup, etc..

Target

The target is described with a set of density and temperature maps, it doesn't matter the source (hydro, PIC, MD, hand made)

PS: the input for the synthetic diagnostics shown above were generated by

To summarise

Phase Hm

Modular design

Both codes have a modular design, they can be easily adapted to simulate different diagnostics, setup, etc..

Target

The target is described with a set of density and temperature maps, it doesn't matter the source (hydro, PIC, MD, hand made)

PS: the input for the synthetic diagnostics shown above were generated by

Thank You for your attention

*No Codes were harmed in the making of this work