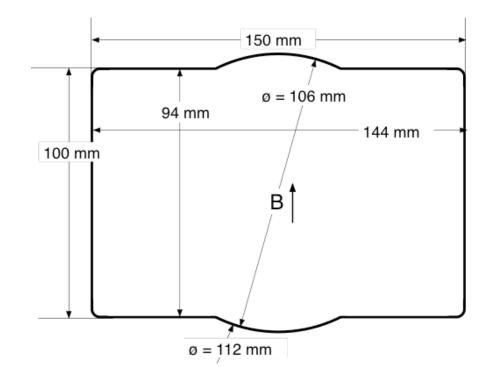


	Design and preparatory work to host the new EDIPO test facility (MAG-4.3-T025)
X. Sarasola (on behalf of the EDIPO collaboration)	

February 13th, 2020

Goals and design constraints


- Strand and cable
- Conceptual design of the new magnet
 - Magneto-static analysis
 - Mechanical analysis
 - Quench protection
- Conclusions and plan for 2020

EPFL Goals

- Main targets of the upgraded test facility:
 - 15 T in a large aperture
 - Operation at 4.2K and 85% of short sample limit
 - Homogeneous field length of 1000 mm
 - Wide range of temperature: $T_{sample} = 4.2 80 \text{ K}$
 - **High-current**: *I*_{sample} ≤ 100 kA

Design constraints

- The coil aperture shall fit a 3-mm-thick vacuum chamber able to host:
 - **SULTAN samples** (94×144 mm aperture)
 - A counter-cryostat to test 100-mm-OD dipole inserts at variable temperature

Design constraints

- The coil aperture shall fit a 3-mm-thick vacuum chamber able to host:
 - **SULTAN samples** (94×144 mm aperture)
 - A counter-cryostat to test 100-mm-OD dipole inserts at variable temperature
- Overall assembly length ≤ 2500 mm
- Overall assembly diameter ≤ 1420 mm
- Overall assembly weight ≤ 20 t
- Operating temperature: 4.2 K
- Operating current ≤ 18 kA
- Dump voltage to ground $\leq 1 \text{ kV}$ (sym ground)
- Allowable coil hot spot temperature: 350 K

Goals and design constraints

Strand and cable

- Conceptual design of the new magnet
 - Magneto-static analysis
 - Mechanical analysis
 - Quench protection
- Conclusions and plan for 2020

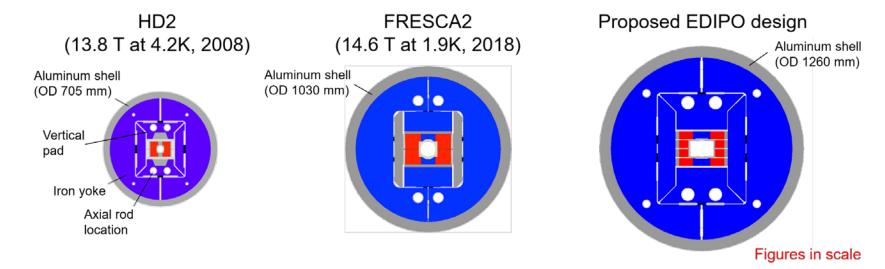
EPFL **Strand and cable**

- A 1.1 mm strand proposed for the magnets of CERN's Future Circular Collider (FCC) could be also appropriate for EDIPO
- The proposed cable is a very high aspect ratio Rutherford cable
- Short dummy lengths have been cabled at LBNL
- Winding tests will be carried out in ~March 2020 at CERN

Strand parameters

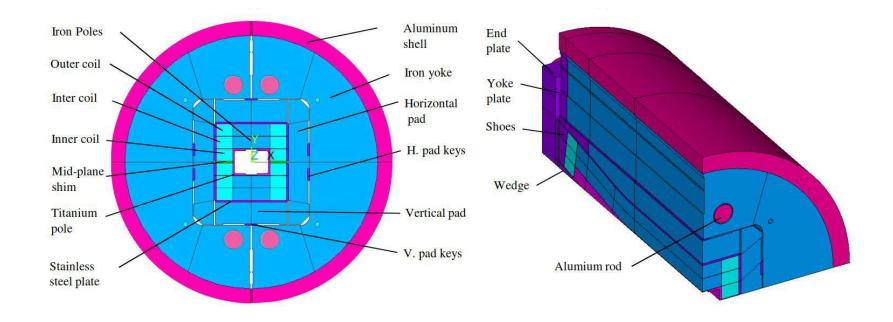
Cable parameters

FCC		Number
1.1	mm	Bare widt
RRP 108/127		Bare thic
1		Compact
>150		Insulation
1640 (3000)	A/mm ²	*After rea
60	μm	
	1.1 RRP 108/127 1 >150 1640 (3000)	1.1 mm RRP 108/127 /


Number of strands	44	
Bare width*	26.2	mm
Bare thickness*	1.95	mm
Compaction	81	%
Insulation thickness	150	μm

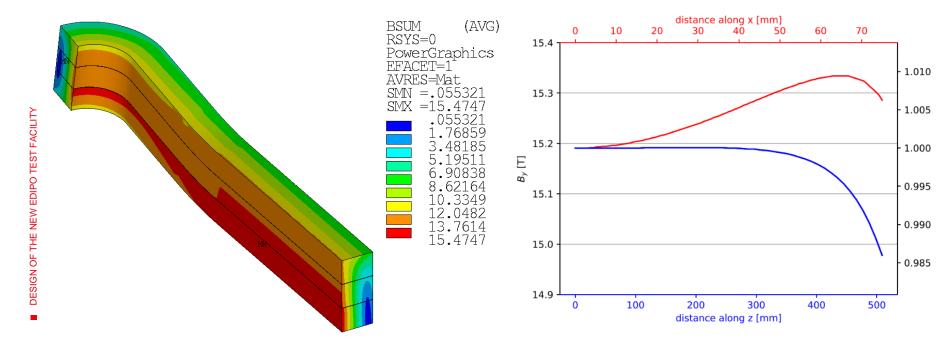
action

- Goals and design constraints
- Strand and cable
- Conceptual design of the new magnet
 - Magneto-static analysis
 - Mechanical analysis
 - Quench protection
- Conclusions and plan for 2020


Flared-ends coil-block designs

- The former EDIPO was a 12.35 T dipole based on a CICC design
- The new dipole will look more like an accelerator-type magnet
- The main features of the proposed flared-end design have been validated in HD2 and FRESCA2
- The designs also rely on the conceptual design of LD1

EPFL Magnet layout


- Shell-based mechanical structure:
 - Al shell preloaded with pressurized bladders and locked with keys
 - Axial preload given by end-plates and rods
 - Coil pre-stress minimizes motion during coil powering

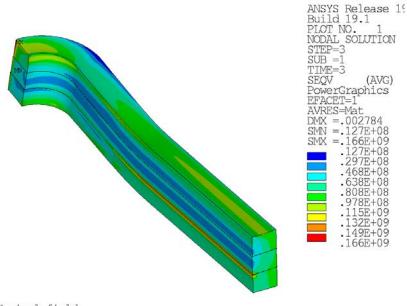
10

EPFL 3D magneto-static analysis

- *I*_{op} = 14.6 kA (85% of *I*_{ss} at 4.2 K)
- Field homogeneity of ±1 % in the test well.
- Uniform field region (1%): 980 mm.

11

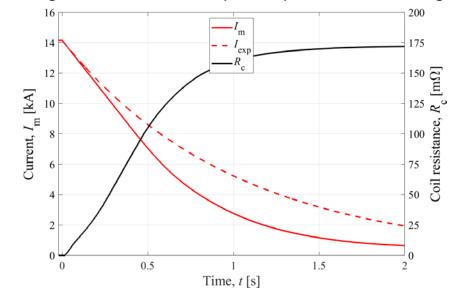
EPFL 3D mechanical analysis


- 3 loading steps are modelled:
 - 1. Key insertion at room temperature
 - 2. Cool-down
 - 3. Powering at 14.6 kA

Vertical displacement at nominal field (m)

ANSYS Release 19 Build 19.1 -.001156 -.001027 -.899E-03 -.771E-03 -.642E-03 -.514E-03 -.385E-03 -.257E-03 -.128E-03

DESIGN OF THE NEW EDIPO TEST FACILITY


Equivalent stress at nominal field (Pa)

×

EPFL Quench analysis

- Magnet protection based on energy extraction
- Analysis performed using LEDET software:
 - Quench-back affects significantly the magnet discharge
 - $T_{hs} = 190-235$ K if the voltage is limited to 1.5 kV ($V_{ground} = \pm 0.75$ kV)
 - $R = 106 \text{ m}\Omega$

Simulated magnet current and hot-spot temperature for a voltage of 1.5 kV

- Goals and design constraints
- Strand and cable
- Conceptual design of the new magnet
 - Magneto-static analysis
 - Mechanical analysis
 - Quench protection
- Conclusions and plan for 2020

EPFL Conclusions and plan for 2020

- We have a conceptual design of EDIPO that satisfies the stringent design requirements, namely:
 - 15 T in a large aperture
 - Operation at 4.2 K and 85% of short sample limit
 - Homogeneous field length of 1000 mm
- The conceptual design activities are close to completion.
- Dummy cabling tests have been conducted.
- Plan for 2020:
 - Engineering design (technical engineer starts working at SPC in March).
 - Integration in the existing facility.
 - Winding tests using the dummy cables.
 - Cabling ~800 m of the actual EDIPO cable.