EPFL

DEMO CS: Mitigation of fatigue Alternative mech designs (MAG-3.1-T017)

X. Sarasola

SWISS PLASMA CENTER February 13th, 2020

EPFL Outline

Radial pre-compression

- Non-leak tight jacket
- Conclusions

EPFL Radial pre-compression in solenoids

- The use of radial pre-compression in solenoids is well known to reduce the amplitude of hoop stress during operation
- One possible alternative is to use the centering force of the TF coils to provide this radial pre-compression (known as "bucking")
 - Standalone design

• Bucked design (TF centering force can provide a bucking pressure of 40 MPa)

Bucked solenoid design

- Use of the **TF centering force** in the DEMO CS:
 - Reduces the hoop stress in the conduits
 - Ultimately can lead to an **increase of 20% in the generated CS flux** compared to a standard standalone solenoid.
- However, bucking implies having a uniform current density over the whole length of the solenoid (limited plasma shaping capability).

	Total current	Conductor	R _i	R。	σ_{hoop}	Fatigue life	B _{peak} [T]	Mag flux [Wb]	
Design	[MAt]	current [kA]	[m]	[m]	[MPa]	[# cycles]		Only CS	CS + PF
Standalone	72.235	46.305	1.5	2.7	288.9	84.2×10 ³	15.72	207.4	221.6
Bucked	86.632	55.533	1.5	2.7	289.3	82.5×10 ³	18.05	248.7	265.8

EPFL Use of high strength reinforcement

- Zylon/epoxy are very high strength composites used as reinforcement in high field (up to 100 T) pulsed solenoids:
 - These solenoids operate at room temperature and above
 - Typically, the Zylon fibers are pre-tensioned to 700 MPa during coil winding (it increases the filling factor of Zylon in the epoxy matrix and limits the hoop stress in the solenoid when powered)
- For our purpose, the main limitation of Zylon is the negative thermal expansion coefficient (α)
 - Other high strength composites (e.g. carbon fiber comp) have also a negative α

Mechanical properties of zylon/epoxy pre-stressed at 700 MPa (77.5% filling factor)

Temp	Tensile	tests (alon	g fibre)	Trans	verse comp			
	UTS (GPa)	E ₃ (GPa)	v ₃₁	UTCS (MPa)	E₁ (GPa)	v ₁₂	Thermal exp. coeff (K ⁻¹)	
RT	3.3	205	0.35	60-150	3	0.6	6×10-6	
77 K	4.3	222	0.35	-	-	-	-0×10 °	

[1] Y. K. Huang et al, Composites: Part B, 33 (2002) 109-115

EPFL Use of high strength reinforcement: Zylon

- The layout of the proposed winding pack is similar compared to uniform current density designs proposed by SPC:
 - The interlayer insulation changes:
 - Thickness is increased from 2 to 10 mm (at the expense of reducing the thickness of the conductors).
 - It is assumed to be made of Zylon/epoxy (77.5% filling factor) pre-tensioned to 700 MPa at room temperature (properties shown in previous slide).
- Zylon/epoxy is assigned to the parts shaded in green below:

DEMO CS: ALTERNATIVE MECHANICAL DESIGNS

EPFL Use of high strength reinforcement: Zylon

- Due to the different thermal coefficients, the zylon/epoxy has to be heavily pretensioned at room temperature.
- The limit is not set by the static limits of Zylon, but the stress transferred to the stainless steel conduits
- The actual gain of magnetic flux is limited to 7.2% compared to a standard standalone solenoid.

	Magnetic flux [Wb]				
	Only CS	CS + PF			
Standalone (standard)	207.4	221.6			
Bucked design	248.7 (+19.9 %)	265.8			
Standalone + Zylon	222.4 (+7.2 %)	237.7			

EPFL Outline

- Radial pre-compression
- Non-leak tight jacket
- Conclusions

EPFL Use of non-leak tight jackets

- In standard CICCs, the jacket provides:
 - Structural support for the operating loads
 - Helium containment function (which imposes stringent constraints in the mechanical design, since no local crack can be tolerated through the jacket wall thickness).
- Therefore, decoupling the two main functions of a CICC jacket can be very attractive.
- If the presence of a local crack is acceptable from the structural point of view, the required jacket cross section might be closer to the static load case.
- Two alternatives are considered:

Proposed winding pack layout

- The general WP layout is similar to previous design iterations:
 - Baseline 2018, uniform current density HTS design
- CuNi and Ti are considered for the inner soft metal conduit.
- Contact between steel U-profiles:
 - Bonded contact models the welds (typically, non-full penetration welds),
 - Standard sliding contact (separation allowed) is used elsewhere

PFL Potential benefits of a double-wall CICC

- Static and fatigue criteria of the conduits are checked
- The magnetic flux can be increased up to 26%

	Total current	Conductor	R _i	R。	$\sigma_{hoop.steel}$	$\sigma_{\text{hoop.cond}}^{*}$	B _{peak}	Mag flux [Wb]	
Design	[MAt]	current [kA]	[m]	[m]	[MPa]	[MPa]	(T)	Only CS	CS + PF
Reference	72.235	46.305	1.5	2.7	288.9	-	15.72	207.4	221.6
Double wall (CuNi + SS)	86.632	55.533	1.5	2.7	439.3	299.4	18.81	248.7	265.81
Double wall (Ti + SS)	90.736	58.164	1.5	2.7	489.8	307.8	19.68	260.5	278.4

*Cool-down not taken into account

- But there are a number of issues associated to the double-wall jacket:
 - Steel conduits have to be welded (otherwise insulation fails). These welds are subjected to cyclic load and might be vulnerable to fatigue.
 - Inner conduit must hold quench pressure, welds might be also vulnerable.
 - Joints and terminations are more complicated.

11

Stress in the welds

- Welds are subjected to a **localized tensile stress**, which might open a crack
- The average stress obviously decreases with the penetration of the weld
- But the peak stress is mesh dependent (not reliably predicted with the FEM)
- 3D modelling is required (intermittent welds)

Tensile stress in the welded contact

Hoop Stress Jacket 01 Type: Normal Stress(X Axis) Unit: MPa Global Coordinate System Time: 1 12/6/2019 2:56 PM

D: Static mechanical model

EPFL Outline

- Radial pre-compression
- Non-leak tight jacket

Conclusions

EPFL Conclusions

- In the DEMO CS reference design, the stress in the jackets has to be limited to avoid the penetration of cracks through the jacket wall:
 - This leads to an oversized design of the jackets, which drastically reduces the current density in the coil, and limits the ability of the CS to generate high flux.
- Two alternatives have been considered so far:
- 1. Use of radial compression:
 - Effective, but...
 - Bucking has severe implications in the design of the CS coil
 - We have not identified yet the ideal reinforcement material
- 2. Use of a non-leak tight jacket:
 - A **double-wall jacket** works on paper, but might present a number of **manufacturing issues**
 - The use of a **solder-filled cable** has also a number of issues (high AC losses, poor heat removal...) which can be studied in a SULTAN sample

14

Proposal 2020

- Further investigation of the CS coil alternative conductor design options.
- Dimensioning of the pre-compression structure based on Baseline 2018.
- Start: 01.03.2020
- End: 31.10.2020
- Resources: 0.2 ppy