

na Imputing Jonel de Supercomputación EXCELENCIA SEVERO OCHOA

Structural Analyses of DEMO Magnets

José Lorenzo

12/02/2020

EUROfusion Engineering Grant - 2020/02

1. Introduction

- 2. Background
- 3. Engineering Grant
- 4. Summary

Introduction

MSc in Industrial Engineering (Universidad de Sevilla, 2014).

2 years in the Magnets, Superconductors and Cryostats (MSC) Group at CERN in collaboration with CIEMAT.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Currently working in the Fusion Group at Barcelona Supercomputing Center (BSC).

Awarded with EUROfusion Engineering Grant "Structural Analyses of DEMO Magnets".

Barcelona Supercomputing Center (BSC)

Spanish National Supercomputing Center and Public R&D Institute.

- **3**rd party of CIEMAT in EUROfusion Consortium Agreement.
- Partnership for Advanced Computing in Europe (PRACE): Hosting Member; Host of EuroHPC pre-exascale machine.
- □ Multidisciplinary team of ~640 people from ~45 countries.

Barcelona Supercomputing Center Centro Nacional de Supercomputación

BSC Annual Meeting 2019

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

JROfusion

MareNostrum 4

BSC Research Departments

Computer Sciences

woj).de.dat('trgf: /hi()(rest-trg[))).geal.event("shou bs.tab", (felateding'ge', astm('ids.is.is.').gelateding-trg[)).geal.event("shou bs.tat'ura(h, h.p.paren(l), finuemeth()).with be();til: attivef.get(1)).gent(shou bs.tat'ura(h, h.p.paren(l), finuemeth()).with be();til: attivef.get(1)).bl.revovel.ast('ids'-regule='tab")'.get('ads'-regule='tab')'.get('ads'-r

Earth Sciences

Life Sciences

Engineering (CASE)

Computational Social Sciences Data Analytics & Visualization Environmental Simulations **Fusion**

Geophysical Applications HPC Software Engineering Physical & Numerical Modelling Quantic Smart Cities Develop computational tools to simulate highly complex problems exploiting supercomputing capabilities.

In-house HPC code Alya to simulate coupled multiphysics problems on large meshes.

Expertise in Computational Mechanics, Electromagnetism, Finite Element Analysis (FEA).

Fusion Group at BSC

- □ Focus in numerical modelling and code development.
- Combine world-class HPC expertise with fusion physics and technology.
- Participation in various EUROfusion work packages.
- Participation in fusion experiments.
- Leading the FusionCAT project (2019-2022).

JET

1. Introduction

2. Background

- 3. Engineering Grant
- 4. Summary

Background: MSC Group at CERN

 TE (Technology) – MSC (Magnets, Superconductors and Cryostats) – TF (Test Facilities):
Superconducting Magnet Test Facilities SM18

Test of epoxy impregnated Nb₃Sn Racetrack Coils to validate the impregnated Nb₃Sn-based coil technology.

Impregnated racetrack coil

14-strand Rutherford cable

Vertical cryostat at CERN SM18

Study of the behaviour during quench of Short Model Coils tested at SM18:

- Hot Spot Temperature.
- Longitudinal and turn-to-turn Quench Propagation Velocity.

Background: MSC Group at CERN

Source: J. Lorenzo et al., "Quench Study in Nb₃Sn Racetrack Coils". https://indico.cern.ch/event/652634/contributions/2656324/attachments/1491764/2319127/Seminar_QuenchStudy.pptx

Background: MSC Group at CERN

Analysis of experimental data sets collected throughout the magnet training at SM18.

Schematic of voltage taps in Short Model Coil to measure the voltage drop along coil sections

Experimental validation of numerical models.

Source: J. Lorenzo et al., "Quench Propagation Velocity and Hot Spot Temperature Models in Nb₃Sn Racetrack Coils".

Background: Fusion Group at BSC

- HPC framework for the multiphysics simulation of High-Temperature Superconductors (HTS) to investigate cable layouts for fusion.
- Electromagnetic module solving the H-formulation of Maxwell's equations implemented in the Alya code and tested using up to 2400 processors in MN4.
- **Collaboration with ICMAB** for the experimental validation of the code.

Current density distribution in bulk superconductor.

Current density distribution in stacked superconductor.

3-D benchmark with Alya Magnet module: 5.5 million DoFs using 920 processors in MN4.

- 1. Introduction
- 2. Background
- 3. Engineering Grant
- 4. Summary

EEG: Project Objectives

Parametric structural assessment:

- Alternative Magnetic Configurations of DEMO magnet system.
- DEMO magnets supports and intercoil structures.
- **Parametric electromagnetic modelling** of DEMO magnet system.
- Training in **manufacturing technologies** for Fusion magnets.
- Use of HPC techniques for the mechanical analysis of DEMO structural elements.

SWISS PLASMA

EEG: Work Programme

3-year programme divided in 5 Work Packages (WPs):

- Review of literature on Fusion Magnets (WP1).
- Parametric Electromagnetic and Mechanical analyses (WP2 & WP3).
- Expertise in manufacturing technologies (WP4).
- HPC in numerical modelling of Fusion Magnets (WP5).
- **Missions** for training and collaboration: F4E, SPC, PMU Garching.
- Collaboration with industry involved in Fusion: Elytt Energy, Tratos Cavi, Criotec.
- **Dissemination** in international conferences.

ÉCOLE POLYTECHNIQUE

EEG: First Year

UWP1: Literature Review.

- Tokamaks, Basic electromagnetic & mechanical models of fusion magnets, design parameters and PROCESS code.
- DEMO magnet system, pre-conceptual designs.
- ITER magnet system.

WP2: Electromagnetic Modelling of DEMO magnet system.

- WP3: Mechanical Assessment.
 - Assessment of Alternative Magnetic Configurations: Double Null (DND), Snowflake (SND), X (XD), Super-X (SXD) divertors.

EEG: Experienced Mentor

Dr Mantsinen

- PhD in Engineering Physics (1999, Finland).
- More than 20 years of international experience in nuclear fusion and plasma physics research.
- Fusion Group Leader at BSC.
- Collaboration with magnetically confined fusion experiments.
- Coordination, analysis, and modelling of experiments on several fusion facilities (JET, AUG, DIII-D and TJ-II).

- 1. Introduction
- 2. Background
- 3. Engineering Grant
- 4. Summary

- Training in DEMO magnet system (electromagnetic modelling, structural analyses, manufacture).
- Background in superconductivity, magnets and numerical modelling.
- At BSC, I will work with experts in FEA and have access to outstanding resources provided by current MN4 and MN5 upgrade by the end of 2020.
- Collaboration with F4E, SPC and PMU Garching.
- Involve industry in DEMO activities.

Fusion Group

EXCELENCIA SEVERO OCHOA

Thank you

@Fusion_BSC

fusion@bsc.es

jose.lorenzo@bsc.es