

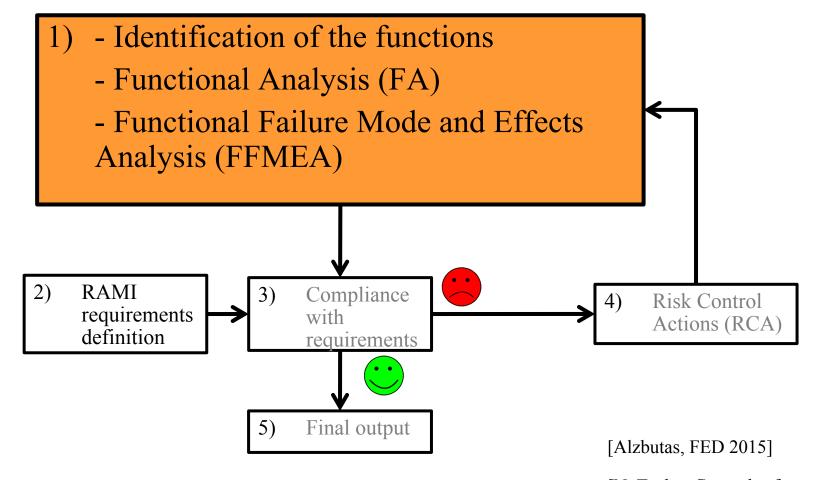
Extra budget: Towards the RAMI analysis of the DEMO magnet system

February 12, 2020

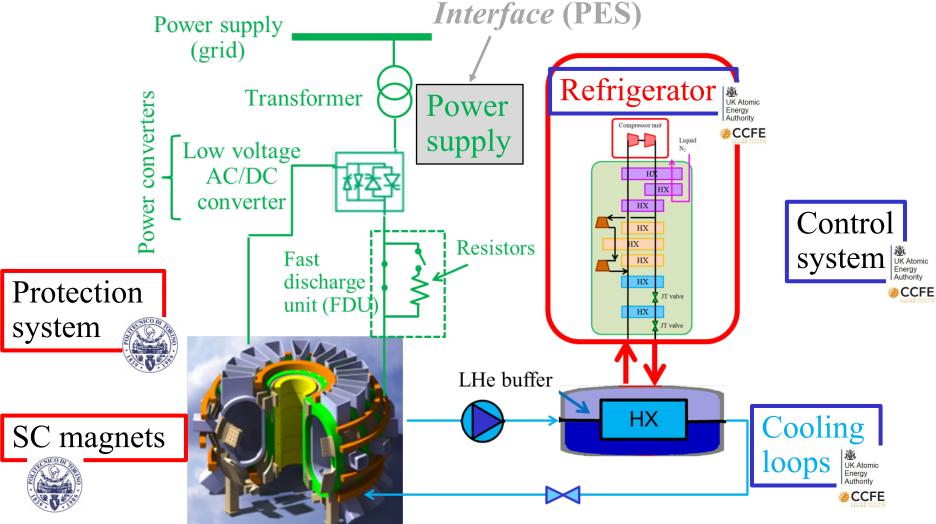
R. Bonifetto¹, D. Carloni², N. Mantel², L. Savoldi³

- ¹ Group, Dipartimento Energia, Politecnico di Torino, Italy
 - ² Culham Centre for Fusion Energy, Culham Science Centre, UK
- ³ Dipartimento Energia «Galileo Ferraris», Politecnico di Torino, Italy

Outline


- RAMI methodology applied to DEMO magnet system
- Functional analysis: sample outcomes
- FFMEA: sample outcomes
- Conclusions and perspective

Reliability, Availability, Maintainability and Inspectability (RAMI) analysis



[N. Taylor, General safety principles, EFDA D 2LJVZ7, 2016]

Ongoing activities at PoliTo and CCFE

- 1) Magnets and Cryoplant and Cryodistribution (2019) & Protection and Control systems (2020):
 - a. Functional Analysis (FA)
 - b. FFMEA for the operating condition into consideration
- 2) Definition of the RAMI requirements for the EU DEMO magnet system
- 3) RAMI requirement verification for the magnets: reliability and availability quantification

UK Atomic Energy Authority

Identification of the functionsFunctional Analysis (FA)Functional Failure Mode and

Compliance

requirements

Final output

with

Effects Analysis (FFMEA)

RAMI

requirements

definition

DEMO requirements

- Definition of the RAMI <u>requirements</u> for the EU DEMO magnet system, from
 - C. Bachmann, "Plant Description Document,"
 EFDA D 2KVWQZ v1.3, July 2018.

	ITER	DEMO	
	Experimental campaigns. Long dwell		
Availability	time, outages for maintenance,	High availability	
	component replacements.		

5.2.1 Requirements

Functional	The TF system shall generate a toroidal magnetic field with a
	toroidal ripple of less than 0.6% (not considering ferromagnetic
	inserts)

- J. Johnston, "DEMO Plant Safety Requirements Document (PSRD)," EFDA_D_2MKFDY v3.1, March 2017.
- L. Morici, "Magnet System Requirement Document (SRD) & Load Specifications (LS)," EFDA_D_2NEKRG v1.0, June 10, 2019.
- "DEMO Power Plant Requirements -PRD- document," EFDA_D_2MG7RD v3.5, July 5, 2019

De-Risk Future Fusion Power Plant							
PRD_06	DEMO shall demonstrate the reliable operation of the plasma including a low						
	number of required unplanned maintenance intervals to repair damaged						
	components due to failures triggered by off-normal plasma events						
Performance							
PRD_10	The duration of <i>flat top</i> shall be at least 2h						
	Maintain Operation						
PRD_17	The DEMO plant shall be designed such that its availability can be extrapolated						
	to a commercial FPP, which operates as a base load that achieves an availability						
	of 60-90%.						

Select an **operational mode** of the system

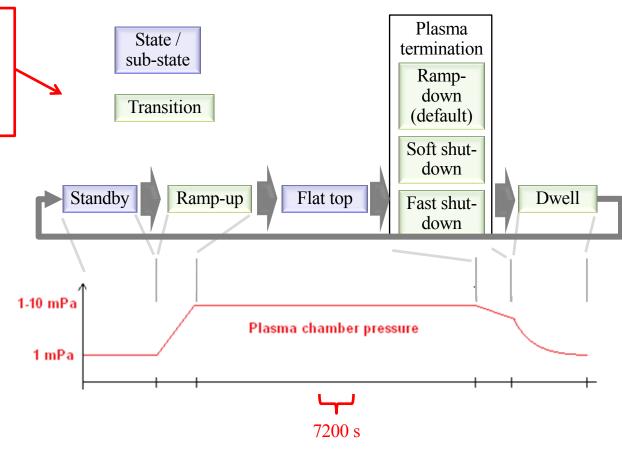
Functional analysis: identify the process (and associated safety/protection) functions

Systematically identify all the relevant failure modes of each subsystem, together with the corresponding causes and consequences

Failure Cause Failure Detection Prevention Process Associated safety / **PBS** Mitigation function protection function action action components consequence How can the failure be (easily) detected? Some affecting the design phase **Outcomes** 2018

Point out the critical components (they need more attention during the design)

- Provide a list of IEs leading to activity scenarios that may compromise the magnets safety and availability
 - Select the Postulated IEs (**PIEs**): most challenging consequences



Selection of the operation mode

- o Dwell sub-state
- Standby sub-state
- o Pulse sub-state
- o Terminate pulse state
- Testing & Conditioning
- Scheduled Maintenance
 - o In-vessel maintenance
 - o In-cryostat maintenance
 - o Ex-vessel maintenance
- Failed mode (unscheduled maintenance)

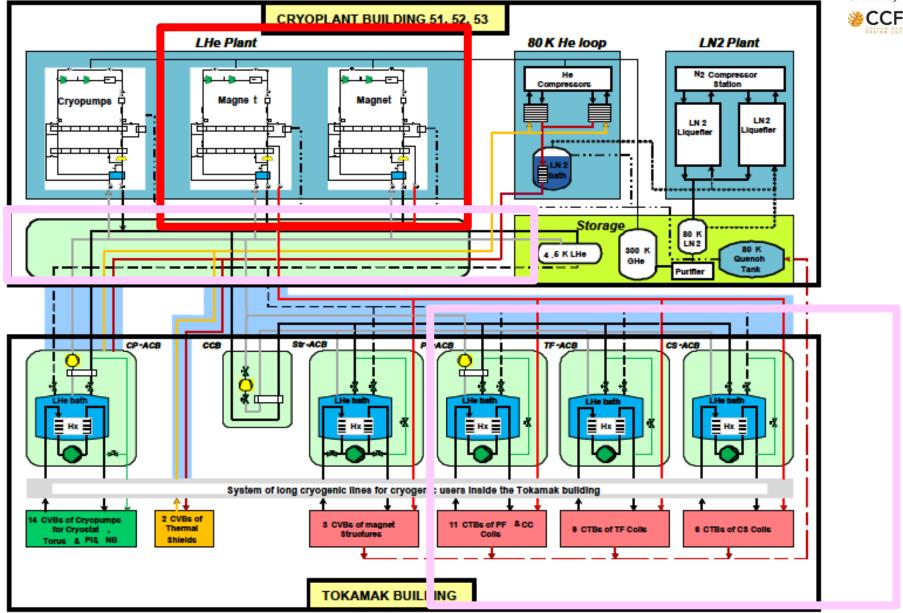
[Bachmann, DEMO Plant Description Document, EFDA_D_2KVWQZ, 2018]

FA of the DEMO magnets

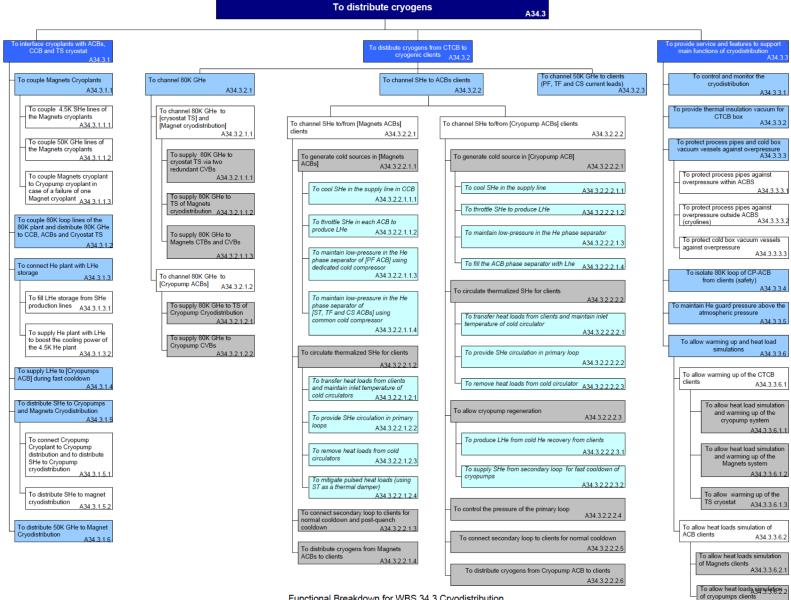
- DDD 34 Design
- SRD 34 Functions and Requirements
- Functional analyses for Cryoplant
- Functional analyses for Cryodistribution
- Summary of the Cryogenic System (PBS 34) functional analysis
- RAMI for the CP ACB

...but not the full RAMI for the PBS 348

NEW here for DEMO: more attention to


- Confinement (especially T), involving all the barriers
- Availability

ITER Cryo-distribution FA (2010)



ITER Cryo-distribution FA (2010)

DEMO Cryo-distribution Process Functions

- 1. To provide cryogen to the cryogenic users
 - 1.1. To supply helium
 - 1.2. To distribute cryogen to the magnets
 - 1.3. To recover cryogen from the magnets
 - 1.4. To distribute cryogen to the current leads
 - 1.5. To recover GHe from the current leads
 - 1.6. To Monitor cryogenic systems
 - 1.7. To ensure all the different operation modes and the transient between 2 modes

DEMO Cryo-distribution Process Functions

To provide cryogen to the cryogenic users

•	1.2. To dist	ribute cryogen to the magnets						
•	1.2.1.To supply LHe bath							
•	1.2.1.1.	To liquify GHe						
•	1.2.1.2.	To extract vapor from the He bath						
•	1.2.1.3.	To keep and preserve leek tightness						
•	1.2.1.3.1.	To connect cryo-equipment and lines						
•	1.2.1.3.2.	To prevent vibrations and stresses						
•	1.2.1.4.	To Overcome pressure drop for requested flow						
•	1.2.1.5.	To Thermally Insulate cryogenic loop						
•	1.2.1.6. parameters	To allow monitoring from CODAC of LHe bath						

- 1.2.1.7. To record parameters 1.2.1.8. To compare real parameters condition to expected condition 1.2.1.9. Regulate LHe flow
- To open/close cryogen channel 1.2.1.10. To increase/reduce cryogen flow to required 1.2.1.11. conditions
- 1.2.2.To provide SHe at nominal conditions 1.2.2.1. To compress SHe at nominal pressure
- 1.2.2.2. To Cool down SHe at nominal temperature
- 1.2.2.3. To provide heat sink to the SHe

- 1.2.2.4. To Circulate a nominal SHe mass flow
- 1.2.2.5. To keep and preserve leek tightness
- 1.2.2.5.1. To connect cryo-equipment and lines
- 1.2.2.5.2. To prevent vibrations and stresses (IP)
- 1.2.2.6. Overcome pressure drop for requested flow
- 1.2.2.7. To Thermally Insulate cryogenic loop
- To allow monitoring from CODAC of SHe 1.2.2.8. parameters
- 1.2.2.9. To record parameters
- 1.2.2.10. To compare real parameters condition to expected condition
- 1.2.2.11. Regulate SHe flow
- 1.2.2.12. To open/close cryogen channel
- 1.2.2.13. To increase/reduce cryogen flow to required conditions
- 1.2.3.To smooth the pulsed heat load from the plasma
- 1.2.3.1 To distribute the cryogen
- 1.2.3.2 To thermally isolate the magnet

FFMEA (Cryo-distribution)

- Process Functions and
- Associated I & S functions
- Type of failure
- Cause
- Failure Consequences
- Detection
- Prevention
- Mitigation

Process Function	Associated Protection/Safety	PBS	Type of	Cause	Failure	Detection	Preventive	Mitigative
Process Function	Function/Safety Functions	components	Failure	Cause	consequences	Detection	actions	Actions
. To provide cryogen to the cryogenic users	To prevent abnormal operation in process systems To ensure Safety							
1.1. To supply helium								
1.1.1.To supply LHe to the magnets								
1.1.1.1.1. To supply LHe@4K	To prevent abnormal operation in process systems	TBD	Loss of He supply	Compressor failure/mal functioning Loss of Power Supply	unavailability of the cold boxes	Loss of He flow, Liquid Bath temperature	Monitoring, Maintenance	Stop of the plant, repair
1.1.2.To supply GHe to the current leads				Compressor				
1.1.1.1.2. Supply He @50K	To prevent abnormal operation in process systems	TBD	Loss of He supply	failure/mal functioning Loss of Power Supply	unavailability of the cold boxes	Loss of He flow, Liquid Bath temperature	Monitoring, Maintenance	Stop of the plant, repair
1.1.3. To supply He to the users during warm-up $@300\mathrm{K}$		TBD	Loss of He supply	Hot Helium supply malfunctio ning Loss of Power Supply	Slow-down of the warm-up operations	Loss of He flow	Monitoring, Maintenance	None
1.2. To distribute cryogen to the magnets	To protect integrity of cryogenic systems To protect the integrity of the distribution system To confine at all process levels fluids and gases							
1.2.1.To supply LHe bath			Loss of cryo	HXs	Ovrepressurization	High	Inspection/Main	
1.2.1.1. To liquify GHe		TBD	heat sink	malfunctio ning	of the CB	pressure in the CB	tenance	Stop and repai
1.2.1.2. To extract vapor from the He bath		TBD	Loss of gas flow	Compressor failure/mal functioning Loss of Power Supply	Ovrepressurization of the CB	High pressure in the CB	Inspection/Main tenance	Stop and repair
1.2.1.3. To keep and preserve leek tightness	To withstand the cryogenic system kinetic pressure	TBD						
1.2.1.3.1. To connect cryo-equipment and	To retain structural	TBD	Loss of fluid	line leak/ruptur e	Loss of cryogen fluid	Pressurizatio n of the environment	Inspection/Main tenance On-line Leak Detection	Isolation of the
			Loss of piping/equip	undue	Loss of leak- thightness	High vibration of	Inspection/Main	Stop of the
1.2.1.3.2. To prevent vibrations and stress	es	TBD	ment	vibrations/s tresses	Equipment/piping	piping/equip		affected line Repair
1.2.1.4. Overcome pressure drop for requested	10 monitor parameters or equipment of the cryogenic systems To perform automatic actions to reduce discrepancies and mitigate	TBD	geometry Loss of flow	Compressor trip/malfun ctioning	Loss of cryognic flow Faulted line quench	Low flow Low pressure	Design Monitoring Maintenace	Repair Replacement
1.2.1.5. To Thermally Insulate cryogenic loop		TBD	Loss of vacuum	Leak from piping/equi pment Loss of Power Supply	Pressurization of the vacuum system	P of the vacuum system	Design	Repair Replacement
1.2.1.6. To allow monitoring from CODAC of LHe bath parameters	To monitor parameters of equipment of the cryogenic systems	TBD	Loss of signals	Instrumenta tion malfunctio ning/failure Capie	Possible abnormal operation	Error signal	Maintenace	Replacement
1.2.1.7. To record parameters		TBD	Loss of parameters recording	malfunctio ning/ruptur	None	Error signal	Maintenace	Replacement
1.2.1.8. To compare real parameters condition to expected condition	To monitor parameters of equipment of the cryogenic systems	TBD	Loss of signals	Instrumenta tion malfunctio ning/failure	Possible abnormal operation	Error signal	Maintenace	Replacement
1.2.1.9. Regulate LHe flow		TBD	Loss of regulation	Equipment malfunctio	Abnormal He supply	Error signal	Maintenace	Replacemen

FFMEA (Cryo-distribution)

									FUSION ENERGYN
Formula Bar	Process Function	Associated Protection/Safety Functions	PBS components	Type of Failure	Cause	Failure consequences	Detection	Preventive actions	Mitigative Actions
	oute cryogen to the magnets	To protect integrity of cryogenic systems To protect the integrity of the distribution system To confine at all process levels fluids and gases							
1.2.1.To sup	ply LHe bath								
1.2.1.1.	To liquify GHe		TBD	Loss of cryo heat sink	HXs malfunctioning/lo ss of vacuum	Ovrepressurization of the CB	High pressure in the CB	Inspection/Mainte nance	Stop and repair
1.2.1.2.	To extract vapor from the He bath		TBD	Loss of gas flow	Compressor failure/ malfunctioning Loss of Power Supply	Ovrepressurization of the CB	High pressure in the CB	Inspection/Mainte nance	Stop and repair
1.2.1.3.	To keep and preserve leek tightness	To withstand the cryogenic system kinetic pressure loads	TBD						
1.2.1.3.1	To connect cryo-equipment and lines	To retain structural integrity of pressure control system or expansion volumes of cryogenic loops	TBD	Loss of fluid	line leak/rupture	Loss of cryogen fluid	Pressurization of the environment	Inspection/Mainte nance On-line Leak Detection	Isolation of the faulted line
1.2.1.3.2	2. To prevent vibrations and stresses		TBD	Loss of piping/equipm ent geometry	undue vibrations/stresse s	Loss of leak- thightness Equipment/piping rupture	High vibration of piping/equipm ent	Inspection/Mainte nance	Stop of the affected line Repair
1.2.1.4.	Overcome pressure drop for requested flow	To monitor parameters of equipment of the cryogenic systems To perform automatic actions to reduce discrepancies and mitigate negative effects	TBD	Loss of flow	Compressor trip/malfunctioni ng	Loss of cryognic flow Faulted line quench	Low flow Low pressure	Design Monitoring Maintenace	Repair Replacement

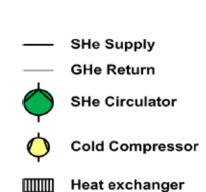
2019 Components

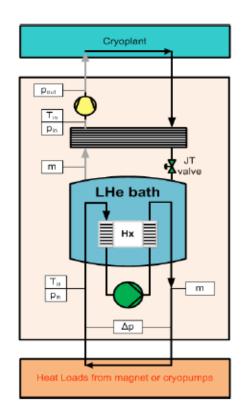
UK Atomic Energy Authority

Cryolines

- leakage/rupture
- Clogging

Valves


malfunctioning


SHe Circulator

- Several failure modes
- Loss of power supply

Cold Compressor

- Several failure modes
- Loss of power supply

HX

- Plug
- Leakage
- Rupture

Conclusions and perspective

- Methodology for RAMI of the DEMO magnet system has been described
- For plasma operation mode:
 - Functional analysis for cryoplant/cryodistribution and magnets
 - Preliminary FFMEA for cryoplant/cryodistribution and magnets
- Main outcome in 2 keywords: repairability(replaceability) + redundancy + more to come in 2020+
- **2020 TS**: for magnets control (CCFE) and protection (PoliTo) systems, in plasma operation mode
 - Functional analysis
 - FFMEA

Next Step

- Review and approval of the FA
- From functions to components
 - Update of failure modes
 - Definition of MTTR for each component
- Reliability and Availability ranking (6 levels)
- Inspectability and Level of Confidence

6 levels Ranking

Relia	bility	Maintainability			
Potential failure frequency	Potential failure effect	Mean time to Repair (MTTR)	Maintainability Access require		
1. Very Low→ MTTF>2000Y	No effect on plant output	1. MTTR>1h	1. No access restriction		
2. Low →200Y <mttf<2000y< td=""><td>2. Reduced plant output</td><td>2. 1h<mttr<1day< td=""><td>2. Breach of Bio shield</td></mttr<1day<></td></mttf<2000y<>	2. Reduced plant output	2. 1h <mttr<1day< td=""><td>2. Breach of Bio shield</td></mttr<1day<>	2. Breach of Bio shield		
3. Moderate →20Y <mttf<200y< td=""><td>3. No plant output controlled shut down</td><td>3. 1day<mttr< 1="" td="" week<=""><td>3. Breach of Cryostat</td></mttr<></td></mttf<200y<>	3. No plant output controlled shut down	3. 1day <mttr< 1="" td="" week<=""><td>3. Breach of Cryostat</td></mttr<>	3. Breach of Cryostat		
4. High →2Y <mttf<20y< td=""><td>4. No plant output uncontrolled shut down</td><td>4. 1 week <mttr< 2="" months<="" td=""><td>4. Breach of NB Vacuum</td></mttr<></td></mttf<20y<>	4. No plant output uncontrolled shut down	4. 1 week <mttr< 2="" months<="" td=""><td>4. Breach of NB Vacuum</td></mttr<>	4. Breach of NB Vacuum		
5. Very High →10 Weeks <mttf<2 td="" years<=""><td></td><td>5. 2 months<mttr<1 td="" year<=""><td>5. Breach of Tokamak Vacuum</td></mttr<1></td></mttf<2>		5. 2 months <mttr<1 td="" year<=""><td>5. Breach of Tokamak Vacuum</td></mttr<1>	5. Breach of Tokamak Vacuum		
6. Frequent→ MTTF<10 Weeks		6. 1year <mttr< td=""><td></td></mttr<>			

6 levels Ranking

Inspectability	Level of confidence					
Possibility of Fault detection	System readiness level	Reliability estimation based on				
Continuous monitoring (preventative)	1. Mock-up demonstrating the element performance for the operational environment	Data based on system in the operating environment				
Detection when failure occur	Mock-up demonstrating the critical functions of the element in a relevant environment	Data based on system in different operating environment				
3. Detection during Dwell	3. Component and/or breadboard critical function verification in relevant environment	3. Databased on similar system in similar environment				
4. Detection during STM	4. Component and/or breadboard functional verification in laboratory environment	4. Data based on similar system in different operating environment				
5. Detection during LTM	5. Analytical and experimental critical function and/or characteristic proof-of-concept	5. Analytical and experimental critical function and/or characteristic proof-of-concept				
6. Impossible	6. Technology concept and/or application formulated					

Thank you for your attention!

IFMIF Reliability Database (2012)

- Data selected for RAMI assessments in IFMIF
- Carlos Tapia, JavierDies, JavierAbal, Angel Ibarra, José M.Arroyo
- Fusion Energy Engineering Laboratory, Barcelona, Spain
- CIEMAT, Madrid, Spain

IFMIF Reliability Database (2012)

Data selected for RAMI ass Carlos Tapia, JavierDies, JavierAbal, Fusion EnergyEngineeringLabo CIEMAT, Madri

Component	Comp	Failure Mode	FM	CODE	Failure rate (1/h)	MTTR (h)
High Voltage Power Supply	VS	cable failure	G	VSG	3.00E-07	2
High Voltage Power Supply	VS	Sparks	K	VSK	3.30E-05	1
High voltage power wires 1m	H1	Short circuit	S	H1S	7.10E-07	5
Hoses 1m	S1	Water Leakage	L	S1L	1.40E-07	4
Hoses 2m	S2	Rupture	R	S2R	4.00E-07	4
HVAC	HV	All failure mode	G	HVG	4.29E-07	3
HWR Cavities	HW	Deformation	G	HWG	1.00E-08	24
Insulators	IN	All failure mode	G	ING	1.00E-08	1
Ion pumps (Vacuum)	IO	Fail to operate	О	IOO	3.90E-05	10
Ion Trap	IT	External Leakage	X	ITX	5.00E-07	3
Lifter	LI	All failure mode	G	LIG	1.00E-05	24
Linux PC	PC	Software	S	PCS	1.71E-05	1
Linux PC	PC	Hardware	H	PCH	3.60E-06	1
LiPb capsule creep	LP	All failure mode	G	LPG	3.93E-08	10
Liquid He connector	LC	Leakage	G	LCG	1.45E-08	10
Liquid Helium feedthrough	LH	Leakage	Н	LHH	5.30E-06	12
Liquid Helium feedthrough	LH	Vacuum Leakage	L	LHL	1.00E-07	2
Liquid Helium pipes 1m	L1	External Leakage	G	L1G	5.00E-07	5
Liquid Helium welds	LW	Leakage	G	LWG	1.43E-08	2

DEMO Cryo-distribution Process Functions

$\lceil \cdot \rceil$	1. To provide cryog	en to the cryogenic				•	1.5.1.2. To connect cryo-equipment and lines
	users		•	1.2.2.2.	To Cool down SHe at nominal temperature	•	1.5.1.3. To Thermally Insulate cryogenic loop
•	1.1. To supply helium			1222	To associate heart sink to the City	•	1.5.1.4. To Overcome pressure drop for requested flow
•	1.1.1.To supply LHe to the	magnets	•	1.2.2.3.	To provide heat sink to the SHe		
•	1.1.1.1.1. To suppl	y LHe@4K	•	1.2.2.4.	To Circulate a nominal SHe mass flow	•	1.5.1.5. To Monitor GHe flow
•	1.1.2.To supply GHe to the	e current leads		1.2.2.5.	To keep and preserve leek tightness	•	1.5.1.6. To record flow
•	1.1.1.1.2. To Supply	/ He @50K	1.2.2.0.			•	1.5.1.7. To compare real flow condition to expected flow condition
•	1.1.3. To supply He to the	users during warm-up @300K	•	1.2.2.5.1.	To connect cryo-equipment and lines	•	1.5.1.8. To Regulate GHe flow
•	1.2. To distribute cryoge	n to the magnets		1.2.2.5.2.	To prevent vibrations and stresses (IP)	•	1.5.1.9. To open/close cryogen channel
•	1.2.1.To supply LHe bath			1.2.2.6.	Overcome pressure drop for requested flov	•	1.5.1.10. To increase/reduce cryogen flow to required conditions
•	1.2.1.1. To liquify GH	е		1.2.2.0.	overcome pressure drop for requested nov	•	1.6. To Monitor cryogenic systems
•	1.2.1.2. To extract va	por from the He bath	•	1.2.2.7.	To Thermally Insulate cryogenic loop		1.6.1.To Monitor cryogen
•	1.2.1.3. To keep and	preserve leek tightness				•	1.6.2.To Monitor cryogen flow rate
	1.2.1.3.1. To conne	ect cryo-equipment and lines	•	1.2.2.8. parameters	To allow monitoring from CODAC of SHe	•	1.6.3.To Monitor cryogen temperature
	1.2.1.3.1.	To connect dryo equipment and miles	•	1.2.2.9.	To record parameters	•	1.6.4.To Monitor cryogen pressure
•	1.2.1.3.2. To preve	nt vibrations and stresses	•	1.2.2.10. expected co	To compare real parameters condition to ondition	•	1.6.5.To Monitor cryogenic loop component parameters
•	1.2.1.4. To Overcome flow	pressure drop for requested	•	1.2.2.11.	Regulate SHe flow	•	1.6.6.To Monitor insulation of the cold boxes
		Insulate cryogenic loop	•	1.2.2.12.	To open/close cryogen channel	•	1.6.7.To Monitor Vibration
·	1.2.1.5. TO Thermally	insulate cryogenic loop	•	1.2.2.13.	To increase/reduce cryogen flow to	•	1.6.8.To Monitoring Oil impurity
•	1.2.1.6. To allow mor bath parameters	nitoring from CODAC of LHe	•	required co	nottions ooth the pulsed heat load from the plasma	•	1.7. To ensure all the different operation modes and the transient between 2 modes.
•	1.2.1.7. To record par	ameters		4 2 2 4 T- 1	Salada da da a cara a cara	•	1.7.1.To Cool down
•		eal parameters condition to	•		istribute the cryogen nermally isolate the magnet	•	1.7.2.To Warm up
	expected condition	a			over cryogen from the magnets	•	1.7.3.To cope with Plasma scenario
•	1.2.1.9. Regulate LHe				tribute cryogen to the current leads	•	1.7.4.To cope with other modes
•	• •	se cryogen channel	-	1.4. 10 015	tribute cryogen to the current leads		
•	1.2.1.11. To increase, required conditions	reduce cryogen flow to	•	1.5. To rec	over GHe from the current leads		
•	1.2.2.To provide SHe at no	ominal conditions	•	1.5.1. To Cir	culate GHe		
•	1.2.2.1. To compress	SHe at nominal pressure	•	1.5.1.1. To l	keep and preserve leek tightness		