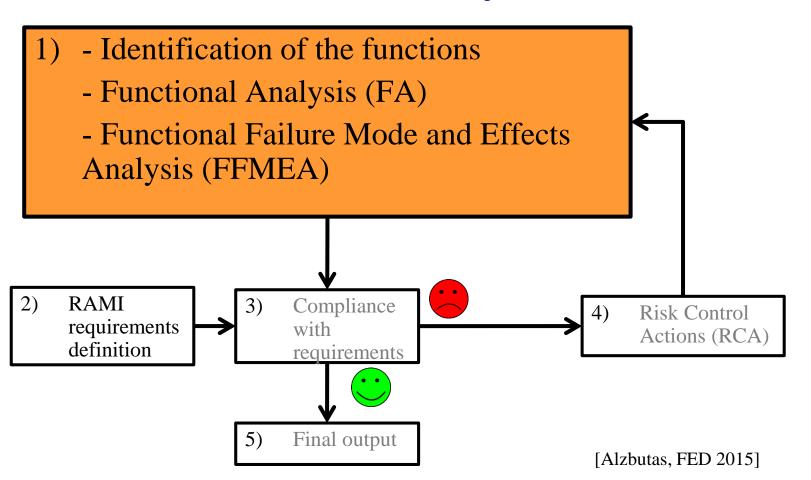


Extra budget: **Towards the RAMI analysis of the DEMO magnet system**

February 12, 2020

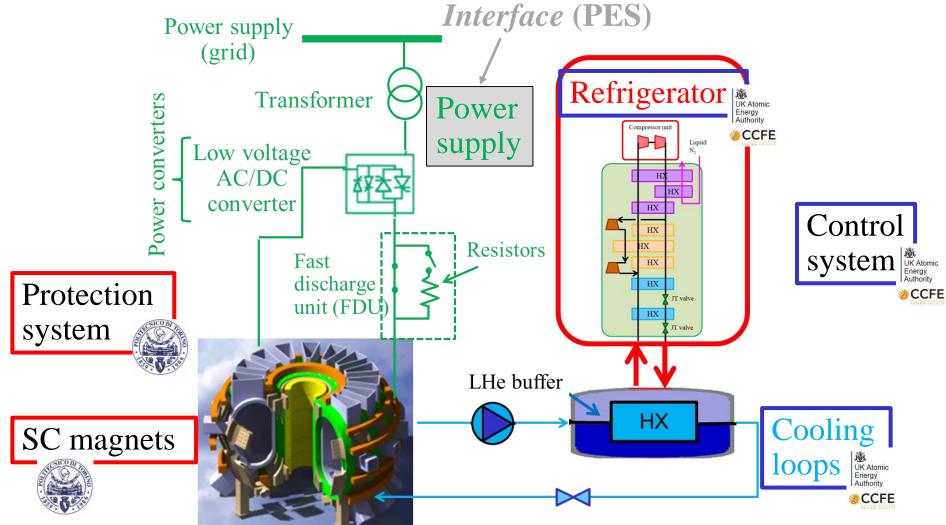
R. Bonifetto¹, D. Carloni², N. Mantel², L. Savoldi³

¹ Group, Dipartimento Energia, Politecnico di Torino, Italy
 ² Culham Centre for Fusion Energy, Culham Science Centre, UK
 ³ Dipartimento Energia «Galileo Ferraris», Politecnico di Torino, Italy


- RAMI methodology applied to DEMO magnet system
- Functional analysis: sample outcomes
- FFMEA: sample outcomes
- Conclusions and perspective

Reliability, Availability, Maintainability and Inspectability (RAMI) analysis

3


[N. Taylor, General safety principles, EFDA_D_2LJVZ7, 2016]

Domain of the analysis within DEMO magnet system

Ongoing activities at PoliTo and CCFE

- 1) Magnets and Cryoplant and Cryodistribution (2019) & Protection and Control systems (2020):
 - a. Functional Analysis (FA)
 - b. FFMEA for the operating condition into consideration
- 2) Definition of the RAMI requirements for the EU DEMO magnet system
- 3) RAMI requirement verification for the magnets: reliability and availability quantification

DEMO requirements

- Definition of the RAMI <u>requirements</u> for the EU DEMO magnet system, from
 - C. Bachmann, "Plant Description Document," EFDA_D_2KVWQZ v1.3, July 2018.

POLITECNICO

Dipartimento Energia

alileo Ferraris

DI TORINO

ITER	DEMO	
 Experimental campaigns. Long dwell		
time, outages for maintenance,	High availability	
component replacements.		

5.2.1 <u>Requirements</u>

Functional

• The TF system shall generate a toroidal magnetic field with a toroidal ripple of less than 0.6% (not considering ferromagnetic inserts)

- J. Johnston, "DEMO Plant Safety Requirements Document (PSRD)," EFDA_D_2MKFDY v3.1, March 2017.
- L. Morici, "Magnet System Requirement Document (SRD) & Load Specifications (LS)," EFDA_D_2NEKRG v1.0, June 10, 2019.
- "DEMO Power Plant Requirements -PRD- document," EFDA_D_2MG7RD v3.5, July 5, 2019

	De-Risk Future Fusion Power Plant						
PRD_06	DEMO shall demonstrate the reliable operation of the plasma including a low						
	number of required unplanned maintenance intervals to repair damaged						
	components due to failures triggered by off-normal plasma events						
	Performance						
PRD_10	The duration of <i>flat top</i> shall be at least 2h						
	Maintain Operation						
PRD_17	The DEMO plant shall be designed such that its availability can be extrapolated						
	to a commercial FPP, which operates as a base load that achieves an availability						
	of 60-90%.						

6

AN.

Identification of the functionsFunctional Analysis (FA)Functional Failure Mode and

Compliance

requirements

Final output

with

Effects Analysis (FFMEA)

3)

5)

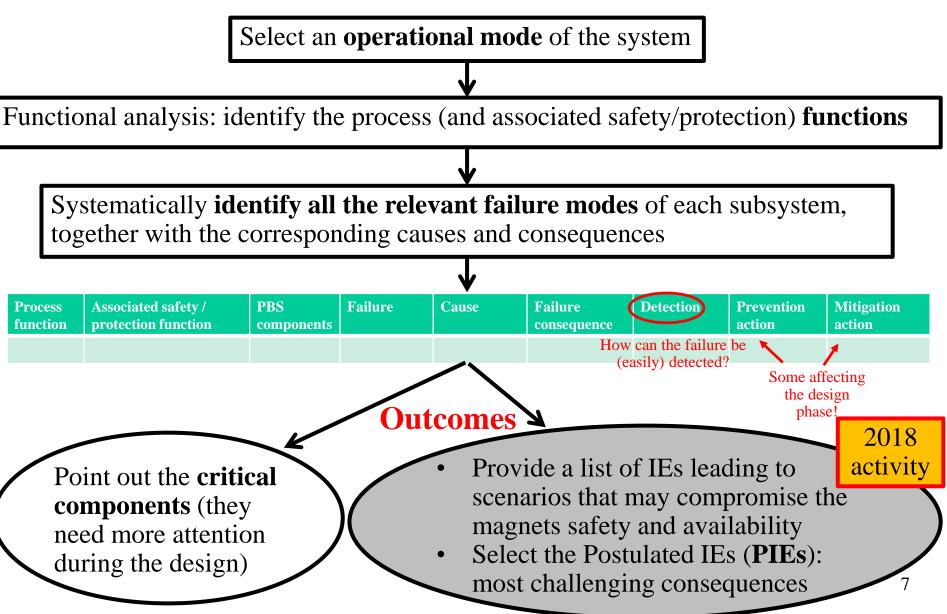
RAMI

requirements

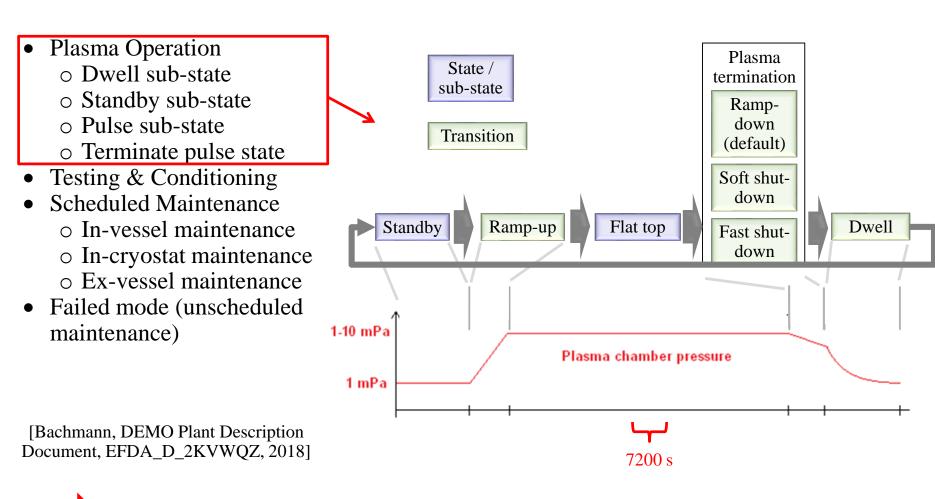
definition

2)

UK Atomic


Energy

Authority



Selection of the operation mode

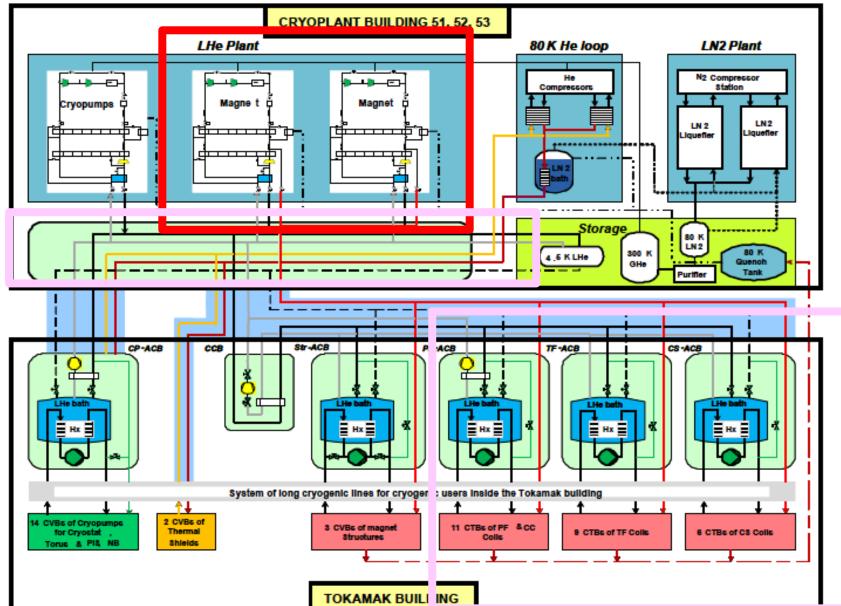
Other operational modes to be addressed in FP9

DEMO magnets functional analysis

• FA of the DEMO magnets

• DDD 34 - Design

- SRD 34 Functions and Requirements
- Functional analyses for Cryoplant
- Functional analyses for Cryodistribution
- Summary of the Cryogenic System (PBS 34) functional analysis
- RAMI for the CP ACB


...but not the full RAMI for the PBS 34 😕

NEW here for DEMO: more attention to

- Confinement (especially T), involving all the barriers
- Availability

Diartimento Energia Tigalian Farrarie" TER Cryo-distribution FA (2010)

UK Atomic Energy Authority

ITER Cryo-distribution FA (2010)

main functions of cryodistributior

To control and monitor the

A34331

A34.3.3.2

43/333

A34.3.3.3.3

A34334

A34335

43/33/

A343361

A3433611

43/33612

A34.3.3.6.1.3

A34.3.3.6.2

A34.3.3.6.2.1

cryodistribution

To provide thermal insulation vacuum for

CTCB box

To protect process pipes and cold box

To protect process pipes against

To protect process pipes against overpressure outside ACBS A34.3.3.2

To protect cold box vacuum vessels

To isolate 80K loop of CP-ACB

from clients (safety)

To maintain He guard pressure above the

atmospheric pressure

To allow warming up and heat load

simulations

To allow warming up of the CTCB

To allow heat load simulation

and warming up of the

cryopump system

To allow heat load simulation

and warming up of the

Magnets system

To allow warming up of the

To allow heat loads simulation

TS cryostat

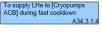
To allow heat loads simulation of

of Magnets clients

ACB clients

clients

overpressure within ACBS


against overpressure

vacuum vessels against overpressure A34.3.3.3

To distribute cryogens A34.3 o distibute cryogens from CTCB to cryogenic clients A34.3.2 To channel 50K GHe to clients To channel 80K GHe To channel SHe to ACBs clients (PF, TF and CS current leads) A34.3.2.3 A34.3.2.1 A34.3.2.2 To channel 80K GHe to [crysostat TS] and To channel SHe to/from [Magnets ACBs] To channel SHe to/from [Cryopump ACBs] clients [Magnet cryodistribution] clients A34.3.2.1.1 A34.3.2.2.1 A34.3.2.2.2 To supply 80K GHe to cryostat TS via two To generate cold sources in [Magnets ACBs] To generate cold source in [Cryopump ACB] A34.3.2.2.1.1 A34.3.2.2.2.1 redundant CVBs A34.3.2.1.1.1 To cool SHe in the supply line To cool SHe in the supply line in CCB A34322211 Magnet cryoplant A34.3.1.1.3 To supply 80K GHe to TS of Magnets A34.3.2.2.1.1.1 To throttle SHe to produce LHe cryodistribution A34.3.2.1.1.2 A34.3.2.2.2.1.2 To throttle SHe in each ACB to produce LHe A34.3.2.2.1.1.2 To maintain low-pressure in the He phase separator To supply 80K GHe to Magnets CTBs and CVBs A34.3.2.2.1.3 To maintain low-pressure in the He A3432113 phase separator of [PF ACB] using To fill the ACB phase separator with Lhe A34 3 2 2 2 1 4 dedicated cold compressor A34.3.2.2.1.1.3 To channel 80K GHe to [Cryopump ACBs] A34.3.2.1.2 To circulate thermalized SHe for clients To maintain low-pressure in the He ∆3/ 3 2 2 2 2 production lines A34,3,1,3,1

To supply 80K GHe to TS of Cryopump Cryodistribution A3432121

To supply 80K GHe to Cryopump CVBs 43/32121

CCB and TS cryostat

To couple Magnets Cryoplants

To couple 4.5K SHe lines of

To couple 50K GHe lines of

To couple Magnets cryoplant

to Cryopump cryoplant in

case of a failure of one

To couple 80K loop lines of the

80K plant and distribute 80K GHe

to CCB, ACBs and Cryostat TS

To connect He plant with LHe

To fill LHe storage from SHe

To supply He plant with LHe

the 4.5K He plant

to boost the cooling power of

storage

the Magnets cryoplants

the Magnets cryoplants

A34.3.1

A34 3 1 1 1

A34 3 1 1 2

A34 3 1 2

434313

43/3132

To distribute SHe to Cryopumps and Magnets Cryodistribution A34 3 1 F

To distribute SHe to magnet cryodistribution A343152

To distribute 50K GHe to Magnet Cryodistribution A34.3.1.6 phase separator of [ST, TF and CS ACBs] using common cold compressor A34.3.2.2.1.1.4

To circulate thermalized SHe for clients 43432212

To transfer heat loads from clients and maintain inlet temperature of cold circulators A34.3.2.2.1.2.1

To provide SHe circulation in primary loons A34.3.2.2.1.2.2

To remove heat loads from cold circulators A34.3.2.2.1.2.3

To mitigate pulsed heat loads (using ST as a thermal damper) A34322124

To connect secondary loop to clients for normal cooldown and post-quench cooldown A3432213

To distribute cryogens from Magnets ACBs to clients A34 3 2 2 1 4

To transfer heat loads from clients and maintain inlet temperature of cold circulator A34 3 2 2 2 2 1

To provide SHe circulation in primary loop A34.3.2.2.2.2.2

To remove heat loads from cold circulator A34.3.2.2.2.2.3

To allow cryopump regeneration A34.3.2.2.2.3

To produce LHe from cold He recovery from clients A34.3.2.2.3.1

To supply SHe from secondary loop for fast cooldown of cryopumps A3/322232

To control the pressure of the primary loop A34.3.2.2.2.4

To connect secondary loop to clients for normal cooldown A34.3.2.2.2.5

To distribute cryogens from Cryopump ACB to clients A34 3 2 2 2 6

To allow heat loads simulation 2 of cryopumps clients

Functional Breakdown for WBS 34.3 Cryodistribution

12

DEMO Cryo-distribution Process Functions

- 1. To provide cryogen to the cryogenic users
 - 1.1. To supply helium
 - **1.2.** To distribute cryogen to the magnets
 - 1.3. To recover cryogen from the magnets
 - 1.4. To distribute cryogen to the current leads
 - 1.5. To recover GHe from the current leads
 - 1.6. To Monitor cryogenic systems
 - 1.7. To ensure all the different operation modes and the transient between 2 modes

DEMO Cryo-distribution Process Functions

• 1. To provide cryogen to the cryogenic users

٠	1.2. To dis	tribute cryogen to the magnets	
•	1.2.1.To su	oply LHe bath	
•	1.2.1.1.	To liquify GHe	
•	1.2.1.2.	To extract vapor from the He bath	
•	1.2.1.3.	To keep and preserve leek tightness	
•	1.2.1.3.1.	To connect cryo-equipment and lines	
•	1.2.1.3.2.	To prevent vibrations and stresses	
•	1.2.1.4.	To Overcome pressure drop for requested flow	
•	1.2.1.5.	To Thermally Insulate cryogenic loop	
•	1.2.1.6. parameters	To allow monitoring from CODAC of LHe bath	
•	1.2.1.7.	To record parameters	
•	1.2.1.8. expected co	To compare real parameters condition to ondition	•
•	1.2.1.9.	Regulate LHe flow	
•	1.2.1.10.	To open/close cryogen channel	
•	1.2.1.11. conditions	To increase/reduce cryogen flow to required	,
•	1.2.2.To pro	ovide SHe at nominal conditions	
•	1.2.2.1.	To compress SHe at nominal pressure	
•	1.2.2.2.	To Cool down SHe at nominal temperature	
•	1.2.2.3.	To provide heat sink to the SHe	

•	1.2.2.4.	To Circulate a nominal SHe mass flow
•	1.2.2.5.	To keep and preserve leek tightness
•	1.2.2.5.1.	To connect cryo-equipment and lines
•	1.2.2.5.2.	To prevent vibrations and stresses (IP)
•	1.2.2.6.	Overcome pressure drop for requested flow
•	1.2.2.7.	To Thermally Insulate cryogenic loop
•	1.2.2.8. parameters	To allow monitoring from CODAC of SHe
•	1.2.2.9.	To record parameters
•	1.2.2.10. expected co	To compare real parameters condition to ndition
•	1.2.2.11.	Regulate SHe flow
•	1.2.2.12.	To open/close cryogen channel
•	1.2.2.13. conditions	To increase/reduce cryogen flow to required
•	1.2.3.To smo	both the pulsed heat load from the plasma
•	1.2.3.1 To di	istribute the cryogen
•	1.2.3.2 To th	nermally isolate the magnet

FFMEA (Cryo-distribution)

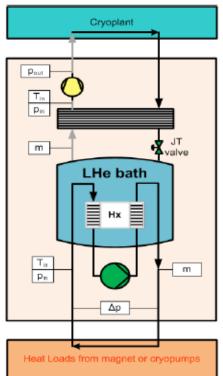
- Process Functions and
- Associated I & S functions
- Type of failure
- Cause
- Failure Consequences
- Detection
- Prevention
- Mitigation

Process Function	Associated Protection/Safety Functions	PBS components	Type of Failure	Cause	Failure consequences	Detection	Preventive actions	Mitigative Actions
To provide cryogen to the cryogenic users	To prevent abnormal operation in process systems To ensure Safety							
.1. To supply helium	To ensure sarety							
1.1.1.To supply LHe to the magnets								
1.1.1.1.1. To supply LHe@4K To prevent abnormal operation in process system		TBD	Loss of He supply	Compressor failure/mal functioning Loss of Power Supply	unavailability of the cold boxes	Loss of He flow, Liquid Bath temperature	Monitoring, Maintenance	Stop of the plant, repair
1.1.2. To supply GHe to the current leads				Compressor				
1.1.1.1.2. Supply He @50K	To prevent abnormal operation in process systems	TBD	Loss of He supply	failure/mal functioning Loss of Power Supply	unavailability of the cold boxes	Loss of He flow, Liquid Bath temperature	Monitoring, Maintenance	Stop of the plant, repair
1.1.3. To supply He to the users during warm-up $@300\mathrm{K}$		TBD	Loss of He supply	Hot Helium supply malfunctio ning Loss of Power Supply	Slow-down of the warm-up operations	Loss of He flow	Monitoring, Maintenance	None
1.2. To distribute cryogen to the magnets	To protect integrity of cryogenic systems To protect the integrity of the distribution system To confine at all process levels fluids and gases							
1.2.1.To supply LHe bath								
1.2.1.1. To liquify GHe		TBD	Loss of cryo heat sink	HXs malfunctio ning	Ovrepressurization of the CB	High pressure in the CB	Inspection/Main tenance	Stop and repa
1.2.1.2. To extract vapor from the He bath		TBD	Loss of gas flow	Compressor failure/mal functioning Loss of Power Supply	Ovrepressurization of the CB	High pressure in the CB	Inspection/Main tenance	Stop and repa
1.2.1.3. To keep and preserve leek tightness	To withstand the cryogenic system kinetic pressure	TBD						
1.2.1.3.1. To connect cryo-equipment and	To retain structural	TBD	Loss of fluid	line leak/ruptur e	Loss of cryogen fluid	Pressurizatio n of the environment	Inspection/Main tenance On-line Leak Detection	Isolation of th faulted line
1.2.1.3.2. To prevent vibrations and stress	es	TBD	Loss of piping/equip ment geometry	undue vibrations/s tresses	Loss of leak- thightness Equipment/piping rupture	High vibration of piping/equip ment	Inspection/Main tenance	Stop of the affected line Repair
1.2.1.4. Overcome pressure drop for requested	10 monitor parameters or equipment of the cryogenic systems To perform automatic actions to reduce discrepancies and mitigate	TBD	Loss of flow	ctioning	Loss of cryognic flow Faulted line quench	Low flow Low pressure	Design Monitoring Maintenace	Repair Replacemen
1.2.1.5. To Thermally Insulate cryogenic loop		TBD	Loss of vacuum	Leak from piping/equi pment Loss of Power Supply	Pressurization of the vacuum system	P of the vacuum system	Design	Repair Replacemen
1.2.1.6. To allow monitoring from CODAC of LHe bath parameters	To monitor parameters of equipment of the cryogenic systems	TBD	Loss of signals	Instrumenta tion malfunctio ning/failure Cable	Possible abnormal operation	Error signal	Maintenace	Replacemen
1.2.1.7. To record parameters		TBD	Loss of parameters recording	malfunctio ning/ruptur	None	Error signal	Maintenace	Replacemen
1.2.1.8. To compare real parameters condition to expected condition	To monitor parameters of equipment of the cryogenic systems	TBD	Loss of signals	Instrumenta tion malfunctio ning/failure	Possible abnormal operation	Error signal	Maintenace	Replacemer
1.2.1.9. Regulate LHe flow		TBD	Loss of regulation	Equipment malfunctio	Abnormal He supply	Error signal	Maintenace	Replacemer

FFMEA (Cryo-distribution)

3	С	C	F	E
-	FUSI	A M	ENE	181

Formula Bar Process Function	Associated Protection/Safety Functions	PBS components	Type of Failure	Cause	Failure consequences	Detection	Preventive actions	Mitigative Actions
1.2. To distribute cryogen to the magnets	To protect integrity of cryogenic systems To protect the integrity of the distribution system To confine at all process levels fluids and gases							
1.2.1.To supply LHe bath								
1.2.1.1. To liquify GHe		TBD	Loss of cryo heat sink	HXs malfunctioning/lo ss of vacuum	Ovrepressurization of the CB	High pressure in the CB	Inspection/Mainte nance	Stop and repair
1.2.1.2. To extract vapor from the He bath		TBD	Loss of gas flow	Compressor failure/ malfunctioning Loss of Power Supply	Ovrepressurization of the CB	High pressure in the CB	Inspection/Mainte nance	Stop and repair
1.2.1.3. To keep and preserve leek tightness	To withstand the cryogenic system kinetic pressure loads	TBD						
1.2.1.3.1. To connect cryo-equipment and lines	To retain structural integrity of pressure control system or expansion volumes of cryogenic loops	TBD	Loss of fluid	line leak/rupture	Loss of cryogen fluid	Pressurization of the environment	Inspection/Mainte nance On-line Leak Detection	Isolation of the faulted line
1.2.1.3.2. To prevent vibrations and stresses		TBD	Loss of piping/equipm ent geometry	undue vibrations/stresse s	Loss of leak- thightness Equipment/piping rupture	High vibration of piping/equipm ent	Inspection/Mainte nance	Stop of the affected line Repair
1.2.1.4. Overcome pressure drop for requested flow	To monitor parameters of equipment of the cryogenic systems To perform automatic actions to reduce discrepancies and mitigate negative effects	TBD	Loss of flow	Compressor trip/malfunctioni ng	Loss of cryognic flow Faulted line quench	Low flow Low pressure	Design Monitoring Maintenace	Repair Replacement


2019 Components

Cryolines

- leakage/rupture
- Clogging
- Valves
 - malfunctioning
- SHe Circulator
 - Several failure modes
 - Loss of power supply
- Cold Compressor
 - Several failure modes
 - Loss of power supply

SHe Supply
 GHe Return
 SHe Circulator
 Cold Compressor
 Heat exchanger

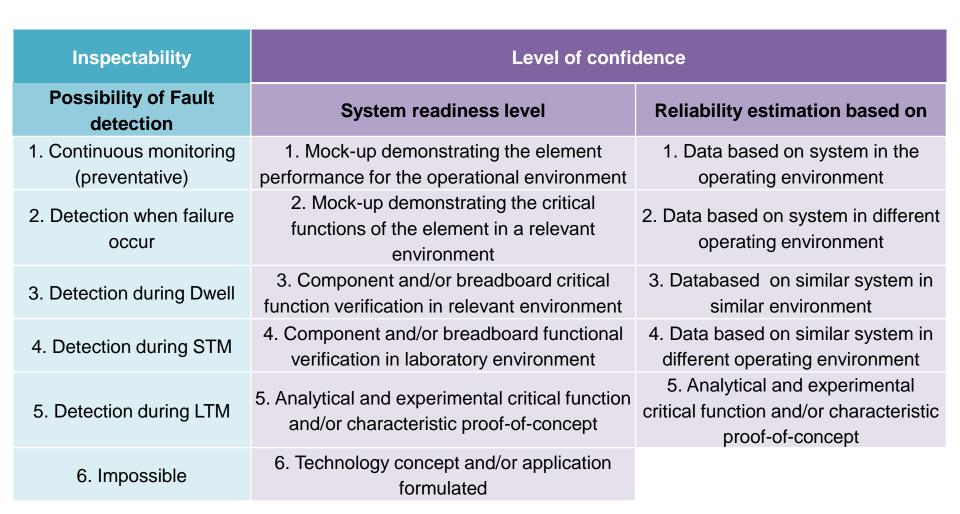
- HX
 - Plug
 - Leakage
 - Rupture

Conclusions and perspective

- Methodology for RAMI of the DEMO magnet system has been described
- For plasma operation mode:
 - Functional analysis for cryoplant/cryodistribution and magnets
 - Preliminary FFMEA for cryoplant/cryodistribution and magnets
- Main outcome in 2 keywords: repairability(replaceability) + redundancy + more to come in 2020+
- **2020 TS**: for magnets control (CCFE) and protection (PoliTo) systems, in plasma operation mode
 - Functional analysis
 - FFMEA

- Review and approval of the FA
- From functions to components
 - Update of failure modes
 - Definition of MTTR for each component
- Reliability and Availability ranking (6 levels)
- Inspectability and Level of Confidence

6 levels Ranking


Relia	ability	Maintainability				
Potential failure frequency	Potential failure effect	Mean time to Repair (MTTR)	Maintainability Access require			
1. Very Low \rightarrow MTTF>2000Y	1. No effect on plant output	1. MTTR>1h	1. No access restriction			
2. Low \rightarrow 200Y <mttf<2000y< td=""><td>2. Reduced plant output</td><td>2. 1h<mttr<1day< td=""><td>2. Breach of Bio shield</td></mttr<1day<></td></mttf<2000y<>	2. Reduced plant output	2. 1h <mttr<1day< td=""><td>2. Breach of Bio shield</td></mttr<1day<>	2. Breach of Bio shield			
3. Moderate →20Y <mttf<200y< td=""><td>3. No plant output controlled shut down</td><td>3. 1day<mttr< 1="" td="" week<=""><td>3. Breach of Cryostat</td></mttr<></td></mttf<200y<>	3. No plant output controlled shut down	3. 1day <mttr< 1="" td="" week<=""><td>3. Breach of Cryostat</td></mttr<>	3. Breach of Cryostat			
4. High →2Y <mttf<20y< td=""><td>4. No plant output uncontrolled shut down</td><td>4. 1 week <mttr< 2="" months<="" td=""><td>4. Breach of NB Vacuum</td></mttr<></td></mttf<20y<>	4. No plant output uncontrolled shut down	4. 1 week <mttr< 2="" months<="" td=""><td>4. Breach of NB Vacuum</td></mttr<>	4. Breach of NB Vacuum			
5. Very High →10 Weeks <mttf<2 td="" years<=""><td></td><td>5. 2 months<mttr<1 td="" year<=""><td>5. Breach of Tokamak Vacuum</td></mttr<1></td></mttf<2>		5. 2 months <mttr<1 td="" year<=""><td>5. Breach of Tokamak Vacuum</td></mttr<1>	5. Breach of Tokamak Vacuum			
6. Frequent→ MTTF<10 Weeks		6. 1year <mttr< td=""><td></td></mttr<>				

[2019, RFX-CCFE, RAMI evaluation of the modular beam source in comparison to the ITER-like beam source]

6 levels Ranking

Thank you for your attention!

IFMIF Reliability Database (2012)

- Data selected for RAMI assessments in IFMIF
- Carlos Tapia, JavierDies, JavierAbal, Angel Ibarra, José M.Arroyo
- Fusion Energy Engineering Laboratory, Barcelona, Spain
- CIEMAT, Madrid, Spain

IFMIF Reliability Database (2012)

Data selected for RAMI ass

Carlos Tapia, JavierDies, JavierAbal,

Fusion EnergyEngineeringLabo

CIEMAT, Madrie

Component	Comp	Failure Mode	FM	CODE	Failure rate (1/h)	MTTR (h)
High Voltage Power Supply	VS	cable failure	G	VSG	3.00E-07	2
High Voltage Power Supply	VS	Sparks	К	VSK	3.30E-05	1
High voltage power wires 1m	H1	Short circuit	S	H1S	7.10E-07	5
Hoses 1m	S1	Water Leakage	L	S1L	1.40E-07	4
Hoses 2m	S2	Rupture	R	S2R	4.00E-07	4
HVAC	HV	All failure mode	G	HVG	4.29E-07	3
HWR Cavities	HW	Deformation	G	HWG	1.00E-08	24
Insulators	IN	All failure mode	G	ING	1.00E-08	1
Ion pumps (Vacuum)	IO	Fail to operate	0	IOO	3.90E-05	10
Ion Trap	IT	External Leakage	Х	ITX	5.00E-07	3
Lifter	LI	All failure mode	G	LIG	1.00E-05	24
Linux PC	PC	Software	S	PCS	1.71E-05	1
Linux PC	PC	Hardware	Η	РСН	3.60E-06	1
LiPb capsule creep	LP	All failure mode	G	LPG	3.93E-08	10
Liquid He connector	LC	Leakage	G	LCG	1.45E-08	10
Liquid Helium feedthrough	LH	Leakage	Η	LHH	5.30E-06	12
Liquid Helium feedthrough	LH	Vacuum Leakage	L	LHL	1.00E-07	2
Liquid Helium pipes 1m	L1	External Leakage	G	L1G	5.00E-07	5
Liquid Helium welds	LW	Leakage	G	LWG	1.43E-08	2

DEMO Cryo-distribution Process Functions

1. To provide cryogen to the cryogenic				•	1.5.1.2. To connect cryo-equipment and lines
users	•	1.2.2.2.	To Cool down SHe at nominal temperature	•	1.5.1.3. To Thermally Insulate cryogenic loop
1.1. To supply helium		1 7 7 7	To provide best sink to the SUs	•	1.5.1.4. To Overcome pressure drop for requested flow
1.1.1.To supply LHe to the magnets	•	1.2.2.3.	To provide heat sink to the SHe		
1.1.1.1.1. To supply LHe@4K	•	1.2.2.4.	To Circulate a nominal SHe mass flow	•	1.5.1.5. To Monitor GHe flow
1.1.2.To supply GHe to the current leads	•	1.2.2.5.	To keep and preserve leek tightness	•	1.5.1.6. To record flow
1.1.1.1.2. To Supply He @50K				•	1.5.1.7. To compare real flow condition to expected flow condition
1.1.3. To supply He to the users during warm-up @300K	•	1.2.2.5.1.	To connect cryo-equipment and lines	•	1.5.1.8. To Regulate GHe flow
1.2. To distribute cryogen to the magnets	•	1.2.2.5.2.	To prevent vibrations and stresses (IP)	•	1.5.1.9. To open/close cryogen channel
1.2.1.To supply LHe bath	•	1.2.2.6.	Overcome pressure drop for requested flow	•	1.5.1.10. To increase/reduce cryogen flow to required conditions
1.2.1.1. To liquify GHe				•	1.6. To Monitor cryogenic systems
1.2.1.2. To extract vapor from the He bath	•	1.2.2.7.	To Thermally Insulate cryogenic loop	•	1.6.1.To Monitor cryogen
1.2.1.3. To keep and preserve leek tightness		1220		•	1.6.2.To Monitor cryogen flow rate
1.2.1.3.1. To connect cryo-equipment and lines	•	1.2.2.8. parameters	To allow monitoring from CODAC of SHe	•	1.6.3.To Monitor cryogen temperature
1.2.1.3.1. To connect cryo-equipment and mes	•	1.2.2.9.	To record parameters	•	1.6.4.To Monitor cryogen pressure
1.2.1.3.2. To prevent vibrations and stresses	•	1.2.2.10. expected c		•	1.6.5.To Monitor cryogenic loop component parameters
1.2.1.4. To Overcome pressure drop for requested	•	1.2.2.11.	Regulate SHe flow	•	1.6.6.To Monitor insulation of the cold boxes
flow	•	1.2.2.12.	To open/close cryogen channel	•	1.6.7.To Monitor Vibration
1.2.1.5. To Thermally Insulate cryogenic loop	•	1.2.2.13.	To increase/reduce cryogen flow to	•	1.6.8.To Monitoring Oil impurity
1.2.1.6. To allow monitoring from CODAC of LHe bath parameters	•	required co 1.2.3.To sm	onditions nooth the pulsed heat load from the plasma	•	1.7. To ensure all the different operation modes and the transient between 2 modes.
1.2.1.7. To record parameters				•	1.7.1.To Cool down
1.2.1.8. To compare real parameters condition to	•	1.2.3.1 To c	listribute the cryogen	•	1.7.2.To Warm up
expected condition	•	1.2.3.2 To t	hermally isolate the magnet	•	1.7.3.To cope with Plasma scenario
1.2.1.9. Regulate LHe flow	•	1.3. To red	cover cryogen from the magnets	•	1.7.4.To cope with other modes
1.2.1.10. To open/close cryogen channel	•	1.4. To dis	tribute cryogen to the current leads		p
1.2.1.11. To increase/reduce cryogen flow to required conditions	•	1.5. To rec	cover GHe from the current leads		
		151 To Ci	rculate GHe		
1.2.2.To provide SHe at nominal conditions	•	1.5.1. 10 01			