

MAG-2.4-T007-D002 (*Extra*) Sizing and preliminary design of feeders

February 12, 2020

A. Allio, R. Bonifetto, S. Viarengo, L. Savoldi

Dipartimento Energia «Galileo Ferraris», Politecnico di Torino, Italy

Focus of the activity

Support for the activity carried out at SPC:

- **Feeders:** Evaluation of the heat load to He lines along the Cryosat FeedThroughs
- **Current Leads**: Evaluation of heat transfer in the heat exchanger

The details of the cross section is still to be defined \rightarrow we refer to ITER design

Feeders (II)

ITER design Cold mass supports containment duct (stainless steel) external diameter 480 mm, thickness 10 mm t=8mm R=150mm heat intercept to Top half thermal shield Bolts M16 80 K Bottom half insulation gasket (G10) thickness 0.5 mm Sliding dovetail Slec sliding contact to vacuum vessel (Teflon-coated stainless steel) 290 K 0 **Containment Duct** Thermal Shield Vacuum Duct Vacuum Barrier

Thermal analysis of feeders (I)

• For the He along the He feeding line for TF, simple enthalpy balance

Thermal analysis of feeders (II)

- Contribution of the Vacuum Barrier too high O(100 W) → need for a **Thermal Intercept** that would cool down the entire barrier to the temperature of the Thermal Shield, as done in ITER
- For a mass flow rate of ~ 100 g/s, T increase of ~ 0.05 0.08 K to He lines \rightarrow need for **separator plate / thermal** intercept in the CD (currently at a temperature ~ T_{TS})

Diardimento "Galileo Ferraris" Thermal-hydraulic analysis of HX of the CL HTSC CL 66 KA

POLITECNICO

3D model of HX – CFD approach

Porous medium CFD model definition

- ΔP characterization \checkmark
- Thermal characterization $(T_{He} \neq T_{Copper})$ To be done in 2020...

Thank you for your attention!