

MAG-2.2-T018 Support to the thermal-hydraulic design and analysis of the DEMO magnet system

February 12, 2020

S. Viarengo, A. Allio, R. Bonifetto, L. Savoldi

Dipartimento Energia «Galileo Ferraris», Politecnico di Torino, Italy

Deliverable content

- 1. Optimize the thermal anchor of the gravity support (GS) and reduce the large conductive load
 - 3D thermal analysis for three TS temperature
 - 2D thermo-mechanical analysis for the best configuration
 - Parametric (thermal and thermo-mechanical) study for the best configuration
- 2. Optimize the casing cooling channels (CCCs)
 - Redistribute the CCCs to reduce temperature gradients in cold operation
 - Assess effect of optimization during re-cooling

1. Rationale of the GS analysis

3D thermal analysis to compute the thermal load reaching the TF coil casing for 9 different location of a Thermal Anchor <u>@ 4.5 K</u> across the GS

Optimal configuration

2D themo-mechanical analysis (check secondary stresses < limits) Application of a second TA on the bottom of the GS at higher temperature (3D)

More refine 3D thermohydraulic analyses

GS design and Model Setup

Thermal results

Thermo-mechanical results

^{Dipartimento} ^{Coalideo Ferrars}². Optimization of the casing cooling channels: new ingredients

Conductor/WP layout (ENEA): [L. Muzzi, ENEA TF Winding Pack Design and Analysis (EFDA D 2NGZ2G), 2may2019]

- 3 holes in the conductor
- Layer-wound option analyzed here

Coil layout/drivers:

- 16 (vs 18) TF coils
- "New" casing design (ENEA)
- Heat loads:
 - "New" version of the nuclear heat load
 - Static heat load [M. Colemann, Definition of the static heat load on the DEMO TF coils (EFDA_D_2N6VWA v1.0) 20sep2016] BUT still computed for 18 TF coils (old baseline)!

[M. Colemann, Advanced definition of neutronic heat load density map on DEMO TF coils (EFDA_D_2MFVCA v2.0), 15jul2016]

ITER-like CCCs design: Tout

Optimized CCCs design: power to the WP

BW IB: Overcooling cancelled

BW OB: Casing \rightarrow WP heating reduced by 85%

• Maximum WP T reduced by ~1 K $\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{\frac{1}{2$

DL

- First results show that the recooling time after FD is unaltered by the optimized CCCs configuration
- The optimization can benefit of the thermal anchor on the GS

Conclusions / 2020 activity proposal

To sum up:

- Minimum thermal load to the TF casing considering TS temperature equal to 80 K and constant coolant temperature
- No issues from thermal stresses
- Additional TA @ T_{TS} beneficial (not shown)
- Optimization strategy of casing cooling channels distribution analyzed → Temperature peak in the WP during cold operation reduced by ~1 K

2020 activity:

- Coupling GS thermal analysis with the analysis of temperature distribution in the coil
- Analysis of pancake-wound ENEA TF WP (+Setup of model for the SPC CS proposal)

Thank you for your attention!

YZ X

Thermo-hydraulic analysis

Temperature map considering the minimum helium mass flow rate (re-routing of only BW IB CCC), thus maximum gradient between inlet and outlet, and $T_{TS} = 80 K$

"New" version of the nuclear heat load

• Poloidal variation:

[M. Colemann, Advanced definition of neutronic heat load density map on DEMO TF coils (EFDA_D_2MFVCA v2.0), 15jul2016]

Still not consistent with the 16 coils!

Static heat load

Still not consistent with the 16 coils!

ENEA conductor

• WP#2, wind-and-react

[L. Muzzi, ENEA TF Winding Pack Design and Analysis (EFDA_D_2NGZ2G), 2may2019]

- Layer-wound: steel, Cu and SC grading
- Pancake-wound: no grading
- NEW feature: 3 distributed pressure-relief channels

• 3 channels modeled as 3×1 channel (all identical)

Dipartiment Energia "Galieo Fer La yer-wound vs. pancake-wound WP + new casing design (ENEA)

POLITECNICO

ITER-like CCCs design

Casing cooling channels (CCCs) design

- Compute the heat load (static, dynamic) in the different walls of the casing (plasma-facing, side, back) in different transients
 - Normal operation
 - Fast discharge (at present, uniform power generation in casing due to eddy currents)
 - Cooldown
- Estimate the power that can be removed by each CCC in normal operation (steady state)

$$Q_{CCC} = A \times h \times (T_{case} - T_{He}) = dm/dt \times (T_{out} - T_{in})$$

Depends on the side \rightarrow this procedure is not directly applicable

 \rightarrow Retrieve the number of CCCs on each side, and cross-check for FD and cooldown:

$$\#CCCs_{XW} = P_{XW}/Q_{CCC}$$

 \rightarrow Start the dimensioning of the structure cooling feeders (extra-budget activity in scivity Final Meeting, Figscall, 12 Feb 2020 xtra-budget activity in scivity Final Meeting, Figscall, 12 Feb 2020 xtra-budget activity in scivity in scivit collaboration with SPC)

$$A \times h \times (T_{case} - T_{case})$$

Optimized CCCs design

- Keep same total number of CCCs
- Split them proportionally to the static heat load on each side

Optimized CCCs design: Tout

WPMAG - 2019 activity Final Meeting, Frascati, 12 Feb 2020