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Deliverable content

1. Optimize the thermal anchor of the gravity support 
(GS) and reduce the large conductive load

– 3D thermal analysis for three TS temperature 

– 2D thermo-mechanical analysis for the best configuration

– Parametric (thermal and thermo-mechanical) study for the 
best configuration

2. Optimize the casing cooling channels (CCCs)

– Redistribute the CCCs to reduce temperature gradients in 
cold operation

– Assess effect of optimization during re-cooling
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1. Rationale of the GS analysis

3

3D thermal analysis to compute the thermal load 
reaching the TF coil casing for 9 different  location 

of a Thermal Anchor @ 4.5 K across the GS

Optimal configuration

2D themo-mechanical 
analysis (check secondary 

stresses < limits)

More refine 3D thermo-
hydraulic analyses 

Application of a second TA 
on the bottom of the GS at 
higher temperature (3D)
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GS design and Model Setup

4

Gravity
Support

Consider 9 different vertical 
positions for the TA 
(z1 = bottom, z9 = top)

TS @ 80 K, 
120 K, 150 K

[F. Nunio, WPMAG Progress review meeting 2017]

Configuration GS3
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Thermal results

5

ሶ𝑄𝑡𝑜𝑝 ≈ 1.5%
ሶ𝑄𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
≈ 97.8%

ሶ𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
≈ 1%

ሶ𝑄𝑏𝑜𝑡𝑡𝑜𝑚

Both ሶ𝑄𝑏𝑜𝑡𝑡𝑜𝑚 and ሶ𝑄𝑡𝑜𝑝 decreases 

when the TA moves upward

For the 

lowest
position 

of the TA

𝑓𝑜𝑟 𝑧8

𝑻𝑻𝑺 [K] ሶ𝑄𝑡𝑜𝑝 [W]

80 20.3

120 23.54

150 29.35

TTS = 80 K
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Thermo-mechanical results

6

• Stress computed on a single cell at
the end of the plates.

• Peak value < limit everywhere

Location of the TA
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[M. Colemann, Advanced definition of 
neutronic heat load density map on 
DEMO TF coils (EFDA_D_2MFVCA 
v2.0), 15jul2016]

2. Optimization of the casing cooling 
channels: new ingredients

7

Conductor/WP layout (ENEA):

– 3 holes in the conductor

– Layer-wound option analyzed here

Coil layout/drivers:

• 16  (vs 18) TF coils

• “New” casing design (ENEA)

• Heat loads:

– “New” version of the nuclear heat load

– Static heat load

[L. Muzzi, ENEA TF Winding Pack 
Design and Analysis 
(EFDA_D_2NGZ2G), 2may2019]

[M. Colemann, Definition of the static heat load on the 
DEMO TF coils (EFDA_D_2N6VWA v1.0) 20sep2016]

BUT still computed for 18 TF coils (old baseline)!
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ITER-like CCCs design: Tout

8

Large temperature 
increase at BW OB

(up to ~3.5 K)

WP SHe inlets

OB
leg

PSW

PSW

PPWPBW

6 → 5 CCCs

1
2

 →
6

6
 C

C
C

s

2
4

 →
6

 C
C

C
s

OPTIMIZED design
• Keep same total # of CCCs
• Split them proportionally to the 

static heat load on each side
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Optimized CCCs design: power to the WP

9

BW IB: Overcooling cancelled

WP SHe inlets

• Maximum WP T 
reduced by ~1 K • First results show that the 

recooling time after FD is 
unaltered by the optimized 
CCCs configuration

• The optimization can 
benefit of the thermal 
anchor on the GS

BW OB: Casing →WP 
heating reduced by 85%

1
2

 →
4

C
C

C
s
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Conclusions / 2020 activity proposal

To sum up:

• Minimum thermal load to the TF casing considering TS 
temperature equal to 80 K and constant coolant temperature

• No issues from thermal stresses 

• Additional TA @ TTS beneficial (not shown)

• Optimization strategy of casing cooling channels 
distribution analyzed → Temperature peak in the WP during 
cold operation reduced by ~1 K

10

2020 activity:

• Coupling GS thermal analysis with the analysis of 

temperature distribution in the coil

• Analysis of pancake-wound ENEA TF WP (+Setup of

model for the SPC CS proposal)
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Thank you for your attention!
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Thermo-hydraulic analysis

12

ሶ𝑄𝑡𝑜𝑝~44𝑊

Temperature map considering the
minimum helium mass flow rate
(re-routing of only BW IB CCC),
thus maximum gradient between
inlet and outlet, and 𝑇𝑇𝑆 = 80 𝐾
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“New” version of the nuclear heat load

• Poloidal variation:

Still not consistent with the 16 coils!
13

[M. Colemann, Advanced definition 
of neutronic heat load density map on 
DEMO TF coils (EFDA_D_2MFVCA 
v2.0), 15jul2016]

𝑃𝑁𝐻𝐶𝐴𝑆𝐸
= 5 Τ𝑊 𝑚3

𝑃𝑁𝐻𝐶𝐴𝑆𝐸
𝑟𝑐𝑎𝑠𝑒 , 𝑧

= 20 ∙ 𝑒−
𝑟𝐶𝐴𝑆𝐸
1.5 ∙ 𝑒

𝑧
0.5 Τ𝑊 𝑚3

𝑃𝑁𝐻𝐶𝐴𝑆𝐸
𝑟𝑐𝑎𝑠𝑒 , 𝑧

= 20 ∙ 𝑒−
𝑟𝐶𝐴𝑆𝐸
1.5 ∙ 𝑒

𝑧
0.5 Τ𝑊 𝑚3

𝑃𝑁𝐻𝐶𝐴𝑆𝐸
𝑟𝑐𝑎𝑠𝑒

= 68.9 ∙ 𝑒−
𝑟𝐶𝐴𝑆𝐸
0.125 Τ𝑊 𝑚3

WPMAG - 2019 activity Final Meeting, Frascati, 12 Feb 2020



Static heat load

• Poloidal variation:

Still not consistent with the 16 coils!
14

[M. Colemann, Definition of the static heat load on the 
DEMO TF coils (EFDA_D_2N6VWA v1.0) 20sep2016]

qrad

qrad

qrad

qrad

qrad

𝑻𝑻𝑺 [K] ሶ𝒒𝒓𝒂𝒅
[W/m2]

80 0.12

120 0.59

150 1.44

𝑻𝑻𝑺 [K] ሶ𝑸𝒄𝒐𝒏𝒅𝐆𝐒
[W]

80 244.63

120 374.24

150 471.45

qcondGS
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ENEA conductor

• WP#2, wind-and-react

– Layer-wound: steel, Cu and SC grading

– Pancake-wound: no grading

• NEW feature: 3 distributed pressure-relief channels

• 3 channels modeled as 3 × 1 channel (all identical)

15

[L. Muzzi, ENEA TF Winding Pack 
Design and Analysis 
(EFDA_D_2NGZ2G), 2may2019]

WPMAG - 2019 activity Final Meeting, Frascati, 12 Feb 2020



Layer-wound vs. pancake-wound WP 
+ new casing design (ENEA)

16

• Pancake-wound: 
no grading →
increased radial 
thickness

• 8 DPs

• Layer-wound: steel, 
Cu and SC grading

• 6 DLs

[L. Muzzi, ENEA TF Winding Pack 
Design and Analysis 
(EFDA_D_2NGZ2G), 2may2019]

[L. Muzzi, private communication, 
September 2019]

Analyzed here

NOT analyzed here
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ITER-like CCCs design

17

Inboard 
leg: 48 
CCCs

Outboard 
leg: 48 
CCCs

6 CCCs

6 CCCs

6 CCCs

6 CCCs
1
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Casing cooling channels (CCCs) 
design

• Compute the heat load (static, dynamic) in the different 
walls of the casing (plasma-facing, side, back) in different 
transients

– Normal operation

– Fast discharge (at present, uniform power generation in 
casing due to eddy currents)

– Cooldown

18

PSW

PSW

PPWPBW

• Estimate the power that can be removed by each CCC in normal operation 
(steady state)

QCCC = A×h×(Tcase–THe) = dm/dt×(Tout–Tin)

→ Retrieve the number of CCCs on each side, and cross-check for FD and 
cooldown:

#CCCsXW = PXW/QCCC

→ Start the dimensioning of the structure cooling feeders (extra-budget activity in 
collaboration with SPC)

Depends on the side → this procedure is not directly applicable
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Optimized CCCs design

19

Inboard 
leg: 14 
CCCs

Outboard 
leg: 82 
CCCs

2 CCCs

2 CCCs

5 CCCs

5 CCCs

4
 C

C
C

s

6
 C

C
C

s

6
6

 C
C

C
s

6
 C

C
C

s

• Keep same total number of CCCs
• Split them proportionally to the static heat load on each side
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Optimized CCCs design: Tout

20

• T increase ~1 K 
almost everywhere

• T increase up to 2 
K in few BW OB 
CCCs

• Remove all SW IB 
CCCs?

WP SHe inlets
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