

SPC CS coil design and analyses (2.1-T025, 2.3-T007)

X. Sarasola & **R. Wesche**

SWISS **PLASMA** CENTER

February 12th, 2020

Requirements and assumptions

- Methodology
- Uniform current density vs graded designs
- Conclusions

EPFL Requirements and assumptions

- Update the CS coil design to the baseline 2018:
 - The **generated magnetic flux is maximized** for the outer radius (*R*_o) and height (*h*) given in [1].
 - A radial space of **115 mm** is preliminary allocated for the **pre-compression** structure, allowing a maximum $R_o = 2.7$ m for the solenoid winding pack.
 - Fatigue is the main design driver for the DEMO CS:
 - The EU DEMO is designed to operate **20,000 plasma cycles** [2].
 - Therefore, the CS coil design has to ensure survival of **40,000 mech cycles**.
- The studies focus on the design of the **CS1 winding pack**:
 - Layer-wound.
 - 10 double-layer sub-coils.
 - RE-123, Nb₃Sn, and Nb-Ti are used respectively for the high, medium, and low field layers of the solenoid.

[1] R. Ambrosino, "Equilibria EOF/SOF 2018 PhysMag." https://idm.euro-fusion.org/?uid=2NV5BB.
[2] C. Bachmann, "DEMO Plant Load Specification," 21-Sep-2017. https://idm.euro-fusion.org/?uid=2MY7H3.

EPFL Requirements and assumptions

- Note on baseline 2018:
 - The peak B field is observed in module CSL2 (not CS1!) during pre-mag.
 - It does not include 100 mm insulation spacing between the CS modules.
 - If 100 mm spacing is included between modules:
 - ΔB is a bit larger (but small, in any case, ΔB = +0.063 T compared to CS1)
 - The current density also becomes slightly larger in CSL2
- The design studies focus on the CS1 WP.
- No gap is considered between modules.

Baseline 2018		CSU3	CSU2	CS1	CSL2	CSL3
Max B (T)	No mod gap	12.177	12.288	12.324	12.329	12.099
	With mod gap	12.195	12.443	12.428	12.491	12.011

- Requirements and assumptions
- Methodology
- Uniform current density vs graded designs
- Conclusions

EPFL Methodology

- In a finite uniform current density solenoid, the magnetic field, flux, and hoop stress experienced in the mid-plane, can be computed analytically.
- Simple parametric studies are used to find the maximum magnetic flux for a given outer radius and hoop stress.

EPFL Methodology: Fatigue Crack Growth Model

- Paris Law: $\frac{da}{dN} = C(\Delta K)^m$
- Assumptions:
 - Initial defect size:
 - 2 mm² (surface)
 - 5 mm² (embedded)
 - Stress intensity factor:
 - Elliptical cracks
 - $\sigma_{residual} = 240 \text{ MPa}$
 - Safety factors [3]:
 - 2x in number of cycles
 - 2x in defect area
 - 1.5× in fracture toughness

[3] C. Jong, "Magnet Structural Design Criteria Part 1: Main Structural Components and Welds," 2012. https://user.iter.org/?uid=2FMHHS.

X. Sarasola & R. Wesche 🛚 🤕

EPFL Methodology

- Designs with higher allowable hoop stress can operate at larger j_{enq} (larger B and φ)
- The benefit of using HTS dilutes for low allowable hoop stress.
- In order to ensure fatigue lifetime (assumptions in previous slide):
 - The σ_{hoop} has to be limited to 300 MPa if SS316LN is used for the conduits (~375 MPa in the case of JK2LB)

- Requirements and assumptions
- Methodology
- Uniform current density vs graded designs
- Conclusions

EPFL Uniform current density vs graded designs

- For an allowable σ_{hoop} = 300 MPa and R_o = 2.7 m, the maximum flux is generated for R_i ≈ 1.5 m.
- The proposed Uniform Current Density (UCD) design is analyzed in ANSYS.
- The radial distribution of the B field is used to propose a more economically sensible superconductor (SC) graded design.
- The stainless steel fraction can be adjusted across the winding pack.
 - The radial stress in the insulation shall be always compressive
 - The hoop stress is such that fatigue lifetime is guaranteed using jackets made of SS316LN.

SPC designs (baseline 2018)

		LTS-only designs					
Design		UCD SC grad		SC+SS grad			
Total currer	nt [MAt]	71.044					
Cond current [kA]		45.541					
R _i [mm]		1500	1540	1540			
R _o [mm]		2700					
SC material subcoils [HTS/Nb ₃ Sn/Nb-Ti]		-/10/-	-/7/3	-/7/3			
Max B [T]		15.43	15.45	15.45			
Mag flux [Wb]	Only CS	204	211.6 (+3.7%)	215.4 (+5.6%)			
	CS+PF	218.0	225.6 (+3.5%)	229.4 (+5.2%)			
$\sigma_{\text{memb, L01}}$ [MPa]		358.6	352.3	347.9			
σ _{hoop, L01} [MPa]		289.8	292.0	291.9			
Cycles until break [#]		82.4×10 ³	84.0×10 ³	85.4×10 ³			

SPC designs (baseline 2018)

Design		LTS-only designs			HTS designs			
		UCD	SC grad	SC+SS grad	UCD	SC grad	SC+SS grad	
Total current [MAt]		71.044			72.235			
Cond current [kA]		45.541			46.305			
R _i [mm]		1500	1540	1540	1500	1520	1520	
R _o [mm]		2700			2700			
SC material subcoils [HTS/Nb ₃ Sn/Nb-Ti]		-/10/-	-/7/3	-/7/3	10/-/-	1/6/3	1/6/3	
Max B [T]		15.43	15.45	15.45	15.72	15.71	15.76	
Mag flux [Wb]	Only CS	204	211.6 (+3.7%)	215.4 (+5.6%)	207.4 (+1.7%)	211.6 (+3.7%)	218.5 (+7.1%)	
	CS+PF	218.0	225.6 (+3.5%)	229.4 (+5.2%)	221.6 (+1.7%)	225.8 (+3.6%)	232.7 (+6.7%)	
$\sigma_{\text{memb, L01}}$ [MPa]		358.6	352.3	347.9	356.0	362.1	350.0	
$\sigma_{hoop, L01}$ [MPa]		289.8	292.0	291.9	288.9	294.5	295.4	
Cycles until break [#]		82.4×10 ³	84.0×10 ³	85.4×10 ³	84.2×10 ³	80.0×10 ³	83.6×10 ³	

- Requirements and assumptions
- Methodology
- Uniform current density vs graded designs
- Conclusions

EPFL Conclusions

- The requirements for the CS in the Baseline 2018 are inconsistent:
 - Given the space allocated for the CS coil, it is not possible to satisfy simultaneously two fundamental design requirements:
 - Required magnetic flux ($\Psi = 250 \text{ Wb}$)
 - Fatigue lifetime (20,000 plasma cycles + Safety factors)
- At low allowable hoop stress (~300 MPa), the use of HTS only provides a small gain in flux compared to Nb₃Sn R&W.
- Use of superconductor and stainless steel grading:
 - More cost-effective layout.
 - **Modest increase** the generated **magnetic flux** (only a few percentage points relative to the uniform current density designs).
- Other strategies to mitigate the effect of fatigue are under study (see tomorrow's presentation on mechanical analyses).

Proposal 2020

- Further investigation of the CS coil alternative conductor design options.
- Dimensioning of the pre-compression structure based on Baseline 2018.
- Start: 01.03.2020
- End: 31.10.2020
- Resources: 0.2 ppy