

MAG EU-CN collaboration 2019-2020

ENEA HTS Cable-in-Conduit Conductor Sample

Final meeting – ENEA, February 11th 2020

Andrea Augieri ENEA, Frascati Research Centre - Superconductivity Laboratory

ENEA HTS cable – layout

Twisted 6 slot Al-core (t.p. = 500 mm)

3 HTS stacks + 3 empty slots (no tapes)

HTS tape from **SuperOx** (4 mm x 0.15 mm) Expected average $I_c(4.2 \text{ K}, 12 \text{ T}) = 200-250 \text{ A}$

Pos.	Description	
	04-30Ag-20Cu-100H	
	Superconductor	GdBCO
	Substrate	Hastelloy C276, 102 ± 2 µm
	Width	4 ± 0.13 mm
	Silver layer HTS side	3 ± 0.5 µm
	Silver layer substrate side	1 ± 0.5 µm
1	Copper layer	20 µm ± 20% per side
	Target (not guaranteed) average	•
	I _c at 77 K, s.f. I _c standard deviation (TapeStar	160 A
	XL data) at 77 K Expected average I _c at 4.2 K.	≤ 3%
	12 T (average lift-factor 1.4)	200-250 A
	Single piece length	Multiple of 7 m

Stack configuration 20 tapes per stack Expected cable I_c @ 12 T, 4.2 K: 250 × # tapes = 12 – 15 kA

Stack distribution: alternate HTS

Empty slots : for tape voltage and temperature sensors wiring

ENEA HTS cable – layout: jacket

Round jacket Al-foil 1.5 mm welded and compacted by drawing + SS-tube (1 mm thick) crimped on Al-jacket

SS tube is functional for the cooling purpose: guarantee suitable He-tight for the cooling system

WPMAG EU-CN, Final meeting - ENEA, February 11th 2020

electrodeposited Cu coating of slots;

electrodeposited Cu coating of slots;

staggered stack end inserted into the slot of the Al-core;

electrodeposited Cu coating of slots;

staggered stack end inserted into the slot of the Al-core;

filled with Pb-Sn paste

electrodeposited Cu coating of slots;

staggered stack end inserted into the slot of the Al-core;

triangle-shaped Cu filler soldered with Pb-Sn paste

electrodeposited Cu coating of slots;

staggered stack end inserted into the slot of the Al-core;

triangle-shaped Cu filler soldered with Pb-Sn paste

Cu-SS cylinder crimped on

electrodeposited Cu coating of slots;

Basic features:

staggered stack end inserted into the slot of the Al-core;

triangle-shaped Cu filler soldered with Pb-Sn paste

Cu-SS cylinder crimped on

Prototype cable fro SULTAN quench experiment has been manufactured

2 m long – 3 HTS slots (20x3 tapes)

He leak test done: **PASSED**! Electrical test: on going (in few weeks)

Manufacturing Photo Story

Several problems encountered

Several solutions found

Thanks to Marcello Marchetti

STEPS

- Slots Cu electro-deposition
- Stack insertion
- Wrapping + jacketing
- Stack staggering
- Cu filler insertion and soldering
- Termination soldering and crimping

Slots Cu electro-deposition

Stack insertion

Stack insertion

Voltage taps on each stack insulated with Kapton Wires running out from the closest empty slot

WPMAG EU-CN, Final meeting – ENEA, February 11th 2020

15

• Wrapping + jacketing

1.5 mm Al jacket (drawing)

1.0 mm SS jacket (no crimping)

WPMAG EU-CN, Final meeting – ENEA, February 11th 2020

Stack staggering

Al and SS jacket removed from the termination region

Stack staggered in 1 cm steps

Cu filler pre-shaped in the core slots

WPMAG EU-CN, Final meeting - ENEA, February 11th 2020

Cu filler insertion and soldering

Termination region after soldering e polishing

• Termination soldering and crimping

Term A: In-foil

Term B: coated

wires

Termination soldering and crimping

WPMAG EU-CN, Final meeting – ENEA, February 11th 2020

We are currently manufacturing the termination plates (Cu)

The same design, with two holes, will be used in the SULTAN sample as bottom connection

ELECTRICAL TEST AT LN2 SCHEDULED FOR THE END OF FEBRUARY

ENEA HTS cable – SULTAN Quench Experiment

Thank you for your

Thanks to all the ENEA HTS Cable Team and especially to M. Marchetti

WPMAG EU-CN, Final meeting - ENEA, February 11th 2020