20 INTERNATIONAL SPHERICAL TORUS WORKSHOP October 28-31, 2019 @ ENEA, Frascati, Italy

Investigation of ion heating/transport process of magnetic reconnection during CS-free merging plasma startup of spherical tokamak in TS-6

Hiroshi Tanabe

Q. Cao⁽¹⁾, H. Tanaka⁽¹⁾, T. Ahmadi⁽¹⁾, M. Akimitsu⁽¹⁾, M. Gryaznevich⁽²⁾⁽³⁾, T. O'Gorman⁽²⁾⁽³⁾,
J. Wood⁽²⁾, R. Scannell⁽³⁾, K. G. McClements⁽³⁾, M. Inomoto⁽¹⁾ and Y. Ono⁽¹⁾
1) Univ. Tokyo 2) Tokamak Energy Ltd. 3) CCFE

This work was supported by JSPS KAKENHI grant numbers 15H05750, 17H04863, 18K18747 and 19H01866.

Merging/reconnection plasma startup ~ promising ST formation scheme without solenoid ~

~ 1keV plasma formation by merging Successful connection to long pulse scenario

Merging phase

Full operation

Y. Ono et al., IAEA FEC2018, EX/P3-24 (2018) Y. Ono et al., Nucl. Fusion **59**, 076025 (2019)

Merging/reconnection plasma startup

~ Many merging experiments reproduced the attractive startup performance ~

Typical feature of electron and ion heating characteristics during merging plasma startup

Clearer characteristic fine structure has been pioneered in MAST high power merging *Exp*.

New findings in MAST:

- Highly peaked T_e around X-point Global ion heating downstream Local ion-electron energy relaxation to form triple peak distribution Finally both ions and electrons are globally heated
 - → Exceeding radiation barrier and successful connection to long pulse scenario by saving CS flux consumption

Future works suggested from MAST results:

 If this research could be done with <u>local magnetic diagnostics</u>, underlying physics could be more clearly understood.
 → U-Tokyo M/C *exp*. starts TS-3 upgrade "TS-3U" (TS-6) with MAST-like ultra-high resolution diagnostics

Highlight of this talk: MAST-like detailed profile measurement in *Lab. Exp.*

To investigate reconnection process, diagnostics needs to satisfy gyro-scale spatial resolution as presented by Y. Ono.

List of ion Larmor radius ρ_i [mm] vs B [T] and T_i [eV]

Larmor radius ρ_i [mm]				Atomic mass: A		1
$\mathbf{B} [\mathbf{T}] \!\!\downarrow T_i[\mathbf{eV}] \rightarrow$	1	10	50	100	150	200
0.05	2.00	6.32	14.14	20.00	24.49	28.28
0.1	1.00	3.16	7.07	10.00	12.25	14.14
0.2	0.50	1.58	3.54	5.00	6.12	7.07
0.3	0.33	1.05	2.36	3.33	4.08	4.71

Dedicated *Lab*. experiment with in-situ magnetic measurement helps detailed understanding of the startup process (non-EFIT)

Typical merging/reconnection heating time scale in TS-3 T_i profile rapidly changes during M/C in the order of $\tau_{Alfven} \sim 10 \mu s$

When merging completion ratio α increases around $t \sim 70 \mu s$, magnetic reconnection occurs and it rapidly changes ion temperature profile to be doubly peaked structure downstream

To approach the microscopic scale, a new 96CH 2D ion Doppler tomography has been developed

Results from the new 96CH spectroscopy system ~ *MAST-like feature was successfully resolved by the new system* ~

More detailed heating structure around X-point ~Initially heated around X-point and then downstream~

In global geometry, downstream outflow heating is trapped by thick layer of closed flux surface formed by reconnected flux

Outflow heating initially increases T_i downstream.

→ ion heat flux driven by $-\nabla T_i$ propagates on closed flux surface under the influence of higher $\chi^i_{\perp}/\chi^i_{\prime\prime} \sim 2(\omega_{ci}\tau_{ii})^2 >> 1$ when high guide field exists.

Machine upgrade for more investigation of global physics ~ TS-3 shutdown and replacement to TS-3U (TS-6) ~

To improve the limited diagnostics access on TS-3 (only around X-point), a new experimental facility was installed at the end of 2017 (full 2D accessible).

- Upgrade status: TS-3 → TS-3U (TS-6) —
- 2017/Oct. : TS-3 shutdown
- 2017/Nov. : the new vessel arrived
- ●2017/Dec. 2018/Feb.:
 - PF/TF/EF coil and TF return assembly, vacuum/gas,
 - power supply connection, scenario development, etc...
- 2018/Mar. : first plasma (low field operation)
- ●2018/Apr.~ : plasma commissioning (diagnostics test)

--> 96CH/320CH ion Doppler tomography operational

- 2019/Summer : installation of high field reconnection driving coils
- 2019/Nov. ~ : starting high field merging operation
- 2020 ~: construction of Ruby Thomson scattering system (96CH)

Poloidally full 360 degrees diagnostics access available

First plasma in TS-3U (TS-6) ~ The new experiment starts plasma commissioning from 2018 spring ~

High speed camera (2µs/frame)

Development of 320 CH spectroscopy system ~ Global measurement with gyro-scale spatial resolution ~

Diagnostics construction costs:

- Optical fibers: \$2k
- Fiber bundle assembly: \$3k
- Collecting lens: < \$2.2k (\$0.12k \times 18)
 - FC connecters/adapters: < \$0.03k × 320)

The new experimental facility enables full-2D imaging measurement of T_i profile

The hot spot formed by outflow heating forms higher ∇T_i downstream but its cross-field component is strongly suppressed by high guide field

In comparison with no guide field experimental condition (typically xⁱ ⊥/xⁱ ~ 1), ion heat flux mostly propagates on field line direction for guide field reconnection.
 → From the view of application scenario, high guide field reconnection is more promising to develop a practical operation scenario than spheromak based one.

Comparison of 2D profile in MAST and TS-6 ~ the characteristic profile formation mechanism has been clearly solved ~

Better downstream transport property: $\chi^{i} // \chi^{i} \sim 2(\omega_{ci} \tau_{ii})^{2} >> 100$ satisfied (negligible heat loss by collision/transport) Achieved reconnection heating mostly depends on B_{rec}^2 ($\propto B_p^2 \propto I_p^2$) and negligible dependence on toroidal field:

Summary and conclusion

Recent progress of the experimental study of merging/reconnection heating for the application to spherical tokamak was briefly reviewed

- Magnetic reconnection heats ions by conversion of flow energy (kinetic energy) of outflow jet to ion thermal energy downstream
- Ultra-high resolution 2D imaging measurement revealed two types of fine structures both around X-point and downstream
 - 1. Around X-point:
 - > Ion temperature increment around diffusion region is observed

> Impulsive ejection event produces clear two hot spots downstream After merging (transport/confinement phase):

> Hot spots formed by outflow heating is transported on field line direction
 > Poloidally double-ring structure formation by toroidal confinement

• Promising transport feature after merging has successfully been demonstrated when high B_t/B_{rec} condition ($B_t/B_{rec} > 3$) is satisfied