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Standard tokamak: 
e.g: JET, Alcator C-Mod, DIII-D, AUG, etc.

Spherical tokamak:
e.g: NSTX (PPPL), MAST (CCFE)

Spherical tokamaks (STs) minimize time-spent by plasma 
particles in the ‘unstable’, bad-curvature side

B magnetic field 
Ip plasma current
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Standard tokamak 
e.g: Alcator C-Mod, SPARC (MIT)

Spherical tokamak:
e.g: NSTX (PPPL), MAST (CCFE)

B magnetic field 
Ip plasma current

Spherical tokamaks: 
• Small aspect ratio A 
• High-beta 𝜷
• High shaping of magnetic surfaces
• High toroidal rotation (if neutral beam driven)

This talk will focus on the Spherical Torus 
(ST) NSTX 

Can improve 
macro & micro 
stability [*]

[*] Rewoldt PoP 1996, Kim PhysFlu 1993, Kaye NF 2007
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ST H-modes have reported neoclassical levels of ion 
thermal transport, transport dominated by electron channel

• Ion thermal transport (Pi) observed close to neoclassical levels in NSTX NBI 
heated H-modes, due to suppression of ion scale turbulence by ExB
shear, beta, strong plasma shaping [Rewoldt PoP 1996, Kaye NF 2007]. 
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ST H-modes have reported neoclassical levels of ion 
thermal transport, transport dominated by electron channel

• Ion thermal transport (Pi) observed close to neoclassical levels in NSTX NBI 
heated H-modes, due to suppression of ion scale turbulence by ExB
shear, beta, strong plasma shaping [Rewoldt PoP 1996, Kaye NF 2007]. 

• Electron thermal transport is always anomalous.
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ST H-modes have reported neoclassical levels of ion 
thermal transport, transport dominated by electron channel

• Ion thermal transport (Pi) observed close to neoclassical levels in NSTX NBI 
heated H-modes, due to suppression of ion scale turbulence by ExB
shear, beta, strong plasma shaping [Rewoldt PoP 1996, Kaye NF 2007]. 

• Electron thermal transport is always anomalous.

• This work will compare predictions of electron-scale turbulence and 
transport to experimental measurements at NSTX:
– Electron thermal power Pe [MW] : è using gyrokinetic simulation (GYRO).
– Turbulence fluctuations : è using gyrokinetic sim. & synthetic diagnostic.

𝝆s ion sound gyro radius
Ion scale (ITG, TEM, …)

k⟘𝝆s0.1 1 10

Electron Scale (ETG) 
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ST H-modes have reported neoclassical levels of ion 
thermal transport, transport dominated by electron channel

• Ion thermal transport (Pi) observed close to neoclassical levels in NSTX NBI 
heated H-modes, due to suppression of ion scale turbulence by ExB
shear, beta, strong plasma shaping [Rewoldt PoP 1996, Kaye NF 2007]. 

• Electron thermal transport is always anomalous.

• This work will compare predictions of electron-scale turbulence and 
transport to experimental measurements at NSTX:
– Electron thermal power Pe [MW] : è using gyrokinetic simulation (GYRO).
– Turbulence fluctuations : è using gyrokinetic sim. & synthetic diagnostic.

𝝆s ion sound gyro radius

High-k scattering: k⟘𝝆s ~ 10-20 (k⟘𝝆e ~ 0.2-0.3)

Ion scale (ITG, TEM, …)

k⟘𝝆s0.1 1 10

Electron Scale (ETG) 
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Outline

• Turbulence fluctuation measurement (high-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
– k-spectra comparisons
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Outline

• Turbulence fluctuation measurement (high-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
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• Scattered power density

Use a high-k scattering diagnostic to probe electron-scale 
turbulence on NSTX

View from top of NSTX
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• Scattered power density

• Gaussian microwave probe beam
– f = 280 GHz ( >> 𝑓pe, 𝑓ce) 

• Ray tracing to determine 𝒌𝐭𝐮𝐫𝐛

Use a high-k scattering diagnostic to probe electron-scale 
turbulence on NSTX

View from top of NSTX

𝒌𝒌turb= +

ωs = ωturb + ωi
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• Scattered power density

• Gaussian microwave probe beam
– f = 280 GHz ( >> 𝑓pe, 𝑓ce) 

• Ray tracing to determine 𝒌𝐭𝐮𝐫𝐛

• Map experimental 𝒌𝐭𝐮𝐫𝐛 to 𝒌𝐭𝐮𝐫𝐛 = 𝑘7, 𝑘8, 𝑘9 sim

Use a high-k scattering diagnostic to probe electron-scale 
turbulence on NSTX

View from top of NSTX

ch 1ch 2ch 3

𝒌𝒌turb= +

ωs = ωturb + ωi

Log-scale
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• Scattered power density

• Gaussian microwave probe beam
– f = 280 GHz ( >> 𝑓pe, 𝑓ce) 

• Ray tracing to determine 𝒌𝐭𝐮𝐫𝐛

• Map experimental 𝒌𝐭𝐮𝐫𝐛 to 𝒌𝐭𝐮𝐫𝐛 = 𝑘7, 𝑘8, 𝑘9 sim

𝒌𝒌turb= +

ωs = ωturb + ωi

• Scattering system is toroidally localized [*]
è We model a 2D synthetic diagnostic

• Preview: Synthetic high-k diagnostic will require use of
‘big-box’ electron-scale simulations (Traditional e-
scale simulations lack numerical k-resolution)

[*] Mazzucato PoP 2003, PPCF 2006 

Use a high-k scattering diagnostic to probe electron-scale 
turbulence on NSTX

View from top of NSTX
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Frequency spectra: 
S 𝑓 ∝ 𝛿𝑛 *

Strong ETG
Weak ETG

Ch 1

Wavenumber spectra: 
S 𝑘 ∝ 𝛿𝑛 *

Strong 
ETG

Weak 
ETG

High-k scattering provides measurements of frequency 
and wavenumber spectra of electron-scale turbulence

ch 1

ch 2ch 3
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Frequency spectra: 
S 𝑓 ∝ 𝛿𝑛 *

Strong ETG
Weak ETG

Ch 1

Wavenumber spectra: 
S 𝑘 ∝ 𝛿𝑛 *

Strong 
ETG

Weak 
ETG

High-k scattering provides measurements of frequency 
and wavenumber spectra of electron-scale turbulence

experimental 
noise at f = 0

turbulence fluctuations

ch 1

ch 2ch 3
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Frequency spectra: 
S 𝑓 ∝ 𝛿𝑛 *

Strong ETG
Weak ETG

Wavenumber spectra: 
S 𝑘 ∝ 𝛿𝑛 *

Strong 
ETG

Weak 
ETG

High-k scattering provides measurements of frequency 
and wavenumber spectra of electron-scale turbulence

ch 1

ch 2ch 3
Ch 1
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Outline

• Turbulence fluctuation measurement (High-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
– k-spectra comparisons
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Accurate high-k turbulence comparisons require ‘big-
box’ electron-scale simulation

• Ion-scale turbulence simulation 𝒌𝜽𝝆𝒔 ≤ 𝟏 .
• Traditional e- scale sim. (𝒌𝜽𝝆𝒔 ≳ 𝟏) has too coarse wavenumber resolution for 

synthetic diagnostic deployment.

0.1 1 10

Ion-scale (ITG, TEM, …) Traditional electron-scale (ETG) 

𝒌𝞱𝝆s
Big eddies Small eddieshigh-k diagnostic
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Accurate high-k turbulence comparisons require ‘big-
box’ electron-scale simulation

• Ion-scale turbulence simulation 𝒌𝜽𝝆𝒔 ≤ 𝟏 .
• Traditional e- scale sim. (𝒌𝜽𝝆𝒔 ≳ 𝟏) has too coarse wavenumber resolution for 

synthetic diagnostic deployment.
• ‘Big-box’ electron-scale sim. contains same physics (ETG), but finer 

wavenumber grid for synthetic diagnostic deployment (𝒌𝜽𝝆𝒔 ≳ 𝟎. 𝟑).

𝒌𝞱𝝆s
Big eddies Small eddies

Traditional electron-scale (ETG) Ion-scale (ITG, TEM, …)

0.1 1 10
high-k diagnostic

‘Big-box’ electron-scale (ETG) 



2020th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Accurate high-k turbulence comparisons require ‘big-
box’ electron-scale simulation

• Experimental profiles used as input to GYRO
• Local simulations performed at scattering location (r/a ~ 0.7, R~135 cm).
• 3 kinetic species, D, C, e- (Zeff~1.85-1.95)
• Electromagnetic: A||+B|| (βe~ 0.3%).
• Collisions (𝝂ei ~ 1 cs/a).
• ExB shear (𝛾E~0.13-0.16 cs/a) + parallel flow shear (𝛾p ~ 1-1.2 cs/a)
• Fixed boundary conditions (radial buffer region).

• Ion-scale turbulence simulation 𝒌𝜽𝝆𝒔 ≤ 𝟏 .
• Traditional e- scale sim. (𝒌𝜽𝝆𝒔 ≳ 𝟏) has too coarse wavenumber resolution for 

synthetic diagnostic deployment.
• ‘Big-box’ electron-scale sim. contains same physics (ETG), but finer 

wavenumber grid for synthetic diagnostic deployment (𝒌𝜽𝝆𝒔 ≳ 𝟎. 𝟑).

𝒌𝞱𝝆s
Big eddies Small eddies

Traditional electron-scale (ETG) Ion-scale (ITG, TEM, …)

0.1 1 10
high-k diagnostic

‘Big-box’ electron-scale (ETG) 
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Outline

• Turbulence fluctuation measurement (High-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
– k-spectra comparisons
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Performed an extensive validation effort to study electron 
thermal transport in a modest-beta NSTX H-mode

• NBI heated H-mode with controlled 
current ramp-down; two steady 
discharge phases, little MHD activity.



2320th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Strong ETG 
DriveWeak ETG Drive
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• NBI heated H-mode with controlled 

current ramp-down; two steady 
discharge phases, little MHD activity.

• Local increase in |Ñn| à ETG 
stabilization [*], observed in high-k 
fluctuation spectra.

[*] ∇n stabilization of ETG: Ren PRL 2011, Ruiz Ruiz PoP 2015

Scattering region
r/a~0.7

Performed an extensive validation effort to study electron 
thermal transport in a modest-beta NSTX H-mode
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Ip [MA]
• NBI heated H-mode with controlled 

current ramp-down; two steady 
discharge phases, little MHD activity.

• Local increase in |Ñn| à ETG 
stabilization [*], observed in high-k 
fluctuation spectra.

• In this work, perform sensitivity scans 
in {∇Te ,∇ne, 𝑞, 𝑠̂} to compare:
– Electron thermal power Pe (TRANSP) 

via sensitivity scans of GYRO sims.
– High-k turbulence freq. and 𝒌-spectra

via synthetic diagnostic for GYRO.

• Details in Ruiz Ruiz PPCF 2019.

[*] ∇n stabilization of ETG: Ren PRL 2011, Ruiz Ruiz PoP 2015

Scattering region
r/a~0.7

Performed an extensive validation effort to study electron 
thermal transport in a modest-beta NSTX H-mode
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Regime diagrams from previous NSTX linear gyrokinetic 
sim suggest ETG could be relevant in present discharge
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Regime diagrams from previous NSTX linear gyrokinetic 
sim suggest ETG could be relevant in present discharge

Regime diagrams (Guttenfelder, NF 2013):

Dominant linear instability:
(a) Low 𝛽): Electrostatic ITG/TEM/ETG. 

High 𝛽): Kinetic ballooning mode (KBM), micro-tearing mode (MT).
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Regime diagrams from previous NSTX linear gyrokinetic 
sim suggest ETG could be relevant in present discharge

Regime diagrams (Guttenfelder, NF 2013):

Dominant linear instability:
(a) Low 𝛽): Electrostatic ITG/TEM/ETG. 

High 𝛽): Kinetic ballooning mode (KBM), micro-tearing mode (MT).
(b) High 𝛽) ⋅ 𝑎/𝐿UV : MT.

High 𝛼XYZ (∝ 𝑝\) : KBM.
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Dominant linear instability:
(a) Low 𝛽): Electrostatic ITG/TEM/ETG. 

High 𝛽): Kinetic ballooning mode (KBM), micro-tearing mode (MT).
(b) High 𝛽) ⋅ 𝑎/𝐿UV : MT.

High 𝛼XYZ (∝ 𝑝\) : KBM.
(c) 𝑎/𝐿UV> 𝑎/𝐿UV,]^_` : ETG.

Regime diagrams (Guttenfelder, NF 2013):

Regime diagrams from previous NSTX linear gyrokinetic 
sim suggest ETG could be relevant in present discharge
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Regime diagrams from previous NSTX linear gyrokinetic 
sim suggest ETG could be relevant in present discharge

This talk: Strong ETG
This talk: Weak ETG

Regime diagrams (Guttenfelder, NF 2013):

Dominant linear instability:
(a) Low 𝛽): Electrostatic ITG/TEM/ETG. 

High 𝛽): Kinetic ballooning mode (KBM), micro-tearing mode (MT).
(b) High 𝛽) ⋅ 𝑎/𝐿UV : MT.

High 𝛼XYZ (∝ 𝑝\) : KBM.
(c) 𝑎/𝐿UV> 𝑎/𝐿UV,]^_` : ETG.
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Outline

• Turbulence fluctuation measurement (High-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
– k-spectra comparisons
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Ion-scale turbulence is predicted to play a negligible role 
in both conditions 

Strong ETG condition
• Ion-scale sim. predicts turbulence is nonlinearly suppressed by ExB shear.
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Ion-scale turbulence is predicted to play a negligible role 
in both conditions 

Strong ETG condition
• Ion-scale sim. predicts turbulence is nonlinearly suppressed by ExB shear.

Weak ETG condition
• Ion-scale sim. shows turbulence can be destabilized within uncertainty in drive terms. 
• BUT ion thermal transport is close to neoclassical levels 

è ion-scale turbulence plays a negligible role 
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Ion-scale turbulence is predicted to play a negligible role 
in both conditions 

Strong ETG condition
• Ion-scale sim. predicts turbulence is nonlinearly suppressed by ExB shear.

Ion-scale turbulence contributions can be 
neglected in the strong and weak ETG 

conditions

Weak ETG condition
• Ion-scale sim. shows turbulence can be destabilized within uncertainty in drive terms. 
• BUT ion thermal transport is close to neoclassical levels 

è ion-scale turbulence plays a negligible role 
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Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
0

0.5

1

1.5

2

2.5

3

Experiment 
(TRANSP) 

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

P e
[M

W
]

Simulation:
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Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

‘Big-box’ electron-scale sim
• Base (exp parameters):     underpredict Pe

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
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2.5

3

Experiment 
(TRANSP) 

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

P e
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𝐛𝐚𝐬𝐞Simulation:
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Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

‘Big-box’ electron-scale sim
• Base (exp parameters):     underpredict Pe
• 𝜎(𝛻T,𝛻n): underpredict Pe

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
0
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1

1.5
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3

Experiment 
(TRANSP) 

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

P e
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𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏)Simulation:
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Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

‘Big-box’ electron-scale sim
• Base (exp parameters):     underpredict Pe
• 𝜎(𝛻T,𝛻n): underpredict Pe
• 𝜎(𝛻T), q, 𝑠̂:	match Pe

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
0

0.5

1

1.5
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2.5

3

Experiment 
(TRANSP) 

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

P e
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𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 ,
& 𝒒, q𝒔Simulation:
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Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

‘Big-box’ electron-scale sim
• Base (exp parameters):     underpredict Pe
• 𝜎(𝛻T,𝛻n): underpredict Pe
• 𝜎(𝛻T), q, 𝑠̂:	match Pe
• 𝜎(𝛻n), q, 𝑠̂:match Pe

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
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2.5

3

Experiment 
(TRANSP) 

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

P e
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]

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 ,
& 𝒒, q𝒔

𝛁𝒏 ,
& 𝒒, q𝒔Simulation:
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Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

‘Big-box’ electron-scale sim
• Base (exp parameters):     underpredict Pe
• 𝜎(𝛻T,𝛻n): underpredict Pe
• 𝜎(𝛻T), q, 𝑠̂:	match Pe
• 𝜎(𝛻n), q, 𝑠̂:match Pe
• 𝜎(𝛻T,𝛻n), q, qs:     overpredict Pe

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
0

0.5

1

1.5

2

2.5

3

Experiment 
(TRANSP) 

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 ,
& 𝒒, q𝒔

𝛁𝒏 ,
& 𝒒, q𝒔

𝛁𝑻, 𝛁𝒏 ,
& 𝒒, q𝒔

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

P e
[M

W
]

Simulation:
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Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

‘Big-box’ electron-scale sim
• Base (exp parameters):     underpredict Pe
• 𝜎(𝛻T,𝛻n): underpredict Pe
• 𝜎(𝛻T), q, 𝑠̂:	match Pe
• 𝜎(𝛻n), q, 𝑠̂:match Pe
• 𝜎(𝛻T,𝛻n), q, qs:     overpredict Pe

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
0

0.5

1

1.5

2

2.5

3

Experiment 
(TRANSP) 

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

P e
[M

W
]

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 ,
& 𝒒, q𝒔

𝛁𝒏 ,
& 𝒒, q𝒔

𝛁𝑻, 𝛁𝒏 ,
& 𝒒, q𝒔

Simulation:

RPe
Base 1

𝜎(𝛻T,𝛻n) 0.29
𝜎(𝛻T), q, 𝑠̂ 0.006
𝜎(𝛻n), q, 𝑠̂ 0.01
𝜎(𝛻T,𝛻n), q, qs 1

Validation metric RPe [*]

[*] Ricci PoP 2011

1 = bad
0 = good
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base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
0

0.5

1

1.5

2

2.5

3

P e
[M

W
]

Experiment 
(TRANSP) 

Pe comparisons using 
‘Big-box’ electron-scale sim.

(Strong ETG)

Sim: 𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 , 𝒒, q𝒔 𝛁𝒏 , 𝒒, q𝒔 𝛁𝑻, 𝛁𝒏 , 𝒒, q𝒔

Strong ETG condition: electron-scale turbulence can 
match Pe within experimental uncertainty

Perform sensitivity scans maximizing 
turbulence drive in 5 ‘big-box’ e- scale sims.

• 1-σ(∇T,∇n) max. uncertainty.
• 10% q, 20% 𝑠̂

‘Big-box’ electron-scale sim
• Base (exp parameters):     underpredict Pe
• 𝜎(𝛻T,𝛻n): underpredict Pe
• 𝜎(𝛻T), q, 𝑠̂:	match Pe
• 𝜎(𝛻n), q, 𝑠̂:match Pe
• 𝜎(𝛻T,𝛻n), q, qs:     overpredict Pe

Ion scale sim 
• Suppressed by ExB shearStrong ETG condition

• Electron-scale turbulence can explain Pe.
• Scanning q and 𝑠̂ is needed for matching Pe. 
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Outline

• Turbulence fluctuation measurement (High-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
– k-spectra comparisons
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𝒌 –space formulation: 𝛙K(𝒌 − 𝒌0)

kθ𝝆s

k r
𝝆 s

Two synthetic diagnostics are implemented for 
quantitative comparisons of e- scale turbulence [*]

Real space formulation: 𝛙R(𝒓)

𝛿𝑛)(𝑟, 𝑡) 𝛿𝑛)(𝑘, 𝑡)

[*] Ruiz-Ruiz to be 
submitted
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𝛿 q𝑛𝑒𝑠𝑦𝑛 𝑡 = ∫𝛿𝑛)(𝑟, 𝑡)𝛙R(𝑟)𝑒−i{|}7⃗𝑑3𝒓

kθ𝝆s

k r
𝝆 s

Two synthetic diagnostics are implemented for 
quantitative comparisons of e- scale turbulence [*]

𝛿𝑛)(𝑟, 𝑡) 𝛿𝑛)(𝑘, 𝑡)

[*] Ruiz-Ruiz to be 
submitted

𝒌 –space formulation: 𝛙K(𝒌 − 𝒌0)Real space formulation: 𝛙R(𝒓)

𝛙R(𝑟)
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𝛿 q𝑛𝑒𝑠𝑦𝑛 𝑡 = ∫𝛿𝑛)(𝑟, 𝑡)𝛙R(𝑟)𝑒−i{|}7⃗𝑑3𝒓 𝛿 q𝑛e𝑠𝑦𝑛 𝑡 = �
*� � ∫ 𝛿𝑛)(𝑘, 𝑡)𝛙K(𝑘-𝑘0) 𝑑3𝒌

kθ𝝆s

k r
𝝆 s

Two synthetic diagnostics are implemented for 
quantitative comparisons of e- scale turbulence [*]

[*] Ruiz-Ruiz to be 
submitted

𝛿𝑛)(𝑟, 𝑡) 𝛿𝑛)(𝑘, 𝑡)

𝛙R(𝑟)

7
6

5

k
3
;s 

4
3

2-4

-3

kr;s 

-2

#10 -3

0.5

0

3

2.5

1

1.5

2

#10 -3

0

0.5

1

1.5

2

2.5𝛙K(𝒌 − 𝒌0)

𝒌 –space formulation: 𝛙K(𝒌 − 𝒌0)Real space formulation: 𝛙R(𝒓)

kθ𝝆s
kr𝝆s
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𝛿 q𝑛𝑒𝑠𝑦𝑛 𝑡 = ∫𝛿𝑛)(𝑟, 𝑡)𝛙R(𝑟)𝑒−i{|}7⃗𝑑3𝒓 𝛿 q𝑛e𝑠𝑦𝑛 𝑡 = �
*� � ∫ 𝛿𝑛)(𝑘, 𝑡)𝛙K(𝑘-𝑘0) 𝑑3𝒌

Obtain a time series of turbulent density fluctuations 𝜹�𝒏𝒆𝒔𝒚𝒏 𝒕

kθ𝝆s

k r
𝝆 s

Two synthetic diagnostics are implemented for 
quantitative comparisons of e- scale turbulence [*]

[*] Ruiz-Ruiz to be 
submitted

𝛿𝑛)(𝑟, 𝑡) 𝛿𝑛)(𝑘, 𝑡)
7

6
5

k
3
;s 

4
3

2-4

-3

kr;s 

-2

#10 -3

0.5

0

3

2.5

1

1.5

2

#10 -3

0

0.5

1

1.5

2

2.5

kθ𝝆s
kr𝝆s

𝒌 –space formulation: 𝛙K(𝒌 − 𝒌0)Real space formulation: 𝛙R(𝒓)

𝛙K(𝒌 − 𝒌0)𝛙R(𝑟)
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Outline

• Turbulence fluctuation measurement (High-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
– k-spectra comparisons
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Synthetic 𝑓-spectrum reproduces spectral peak and 
spectral width 𝑊𝒇

-3 -2 -1 0 1 2 3
f [MHz]

-16

-15

-14

-13

-12

-11

-10

-9

-8
S(

f) 
[a

.u
.]

Spectral Density comparisons: ch1
Diagnostic (strong ETG)Diagnostic (Strong ETG)
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-3 -2 -1 0 1 2 3
f [MHz]

-16

-15

-14

-13

-12

-11

-10

-9

-8
S(

f) 
[a

.u
.]

Spectral Density comparisons: ch1
Diagnostic (strong ETG)Diagnostic (Strong ETG)

Synthetic 𝑓-spectrum reproduces spectral peak and 
spectral width 𝑊𝒇
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-3 -2 -1 0 1 2 3
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-16

-15

-14
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-12

-11
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f) 
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Spectral Density comparisons: ch1
Diagnostic (strong ETG)
Syn. (strong ETG)

Diagnostic (Strong ETG)
Synthetic (Strong ETG)

Synthetic 𝑓-spectrum reproduces spectral peak and 
spectral width 𝑊𝒇
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-3 -2 -1 0 1 2 3
f [MHz]

-16

-15

-14
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f) 
[a
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Spectral Density comparisons: ch1
Diagnostic (strong ETG)
Syn. (strong ETG)
Diagnostic (weak ETG)

Diagnostic (Strong ETG)
Synthetic (Strong ETG)
Diagnostic (weak ETG)

Synthetic 𝑓-spectrum reproduces spectral peak and 
spectral width 𝑊𝒇
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Spectral Density comparisons: ch1
Diagnostic (strong ETG)
Syn. (strong ETG)
Diagnostic (weak ETG)
Syn. (weak ETG)

Diagnostic (Strong ETG)
Synthetic (Strong ETG)
Diagnostic (weak ETG)
Synthetic (weak ETG)

Synthetic 𝑓-spectrum reproduces spectral peak and 
spectral width 𝑊𝒇
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Spectral Density comparisons: ch1
Diagnostic (strong ETG)
Syn. (strong ETG)
Diagnostic (weak ETG)
Syn. (weak ETG)

Diagnostic (Strong ETG)
Synthetic (Strong ETG)
Diagnostic (weak ETG)
Synthetic (weak ETG)

Synthetic 𝑓-spectrum reproduces spectral peak and 
spectral width 𝑊𝒇

Frequency spectra comparisons
• Good agreement is achieved in the frequency spectra. 
• Synthetic frequency spectrum should match experiment 

as a test of simulation and synthetic diagnostic.
• Cannot be used to differentiate between simulations. 
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Outline

• Turbulence fluctuation measurement (High-k scattering).
• GYRO simulation details.
• NSTX H-mode discharge under study.
• Electron thermal transport comparisons.
• Electron-scale turbulence comparisons:

– Synthetic diagnostic description
– f-spectra comparisons
– 𝑘-spectra comparisons

§ 5 ‘big-box’ e- scale sims for the strong ETG case
§ 1 ‘big-box’ e- scale sim for the weak ETG case
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𝑘-spectra comparisons isolate the importance of 𝑞 and 𝑠̂
in determining the shape of the 𝑘-spectrum

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: base

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n)

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T), q, s

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: ( n), q, s

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n), q, s

a)

𝑘-spectra shape comparisons for the strong ETG condition
5 ‘big-box’ e- scale sims. 

Pe
sim ~ 30% Pe

exp • Synthetic spectra are scaled to 
compare the shape of the 
𝑘-spectrum 𝑆 𝑘 .

[∗] Ricci PoP 2011, Holland PoP 2016
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𝑘-spectra comparisons isolate the importance of 𝑞 and 𝑠̂
in determining the shape of the 𝑘-spectrum

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: base

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n)

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T), q, s

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: ( n), q, s

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n), q, s

a) b)

𝑘-spectra shape comparisons for the strong ETG condition
5 ‘big-box’ e- scale sims. 

Pe
sim ~ 30% Pe

exp Pe
sim ~ 70% Pe

exp • Synthetic spectra are scaled to 
compare the shape of the 
𝑘-spectrum 𝑆 𝑘 .

[∗] Ricci PoP 2011, Holland PoP 2016
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𝑘-spectra comparisons isolate the importance of 𝑞 and 𝑠̂
in determining the shape of the 𝑘-spectrum

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: base

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n)

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T), q, s

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: ( n), q, s

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n), q, s

a) b) c)

d) e)

𝑘-spectra shape comparisons for the strong ETG condition
5 ‘big-box’ e- scale sims. 

Pe
sim ~ 30% Pe

exp Pe
sim ~ 70% Pe

exp Pe
sim ~ 95% Pe

exp

Pe
sim ~ 91% Pe

exp Pe
sim ~ 170% Pe

exp

• Synthetic spectra are scaled to 
compare the shape of the 
𝑘-spectrum 𝑆 𝑘 .

• Simulations run with scaled-𝑞, 𝑠̂
(c, d, e) best match the shape 
of the 𝑘-spectrum.

[∗] Ricci PoP 2011, Holland PoP 2016
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𝑘-spectra comparisons isolate the importance of 𝑞 and 𝑠̂
in determining the shape of the 𝑘-spectrum

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: base

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n)

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T), q, s

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: ( n), q, s

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n), q, s

a) b) c)

d) e)

𝑘-spectra shape comparisons for the strong ETG condition
5 ‘big-box’ e- scale sims. 

Pe
sim ~ 30% Pe

exp Pe
sim ~ 70% Pe

exp Pe
sim ~ 95% Pe

exp

Pe
sim ~ 91% Pe

exp Pe
sim ~ 170% Pe

exp

• Synthetic spectra are scaled to 
compare the shape of the 
𝑘-spectrum 𝑆 𝑘 .

• Simulations run with scaled-𝑞, 𝑠̂
(c, d, e) best match the shape 
of the 𝑘-spectrum.

• Validation metric Rshape 𝜖 0, 1
[∗]

[∗] Ricci PoP 2011, Holland PoP 2016
1 = bad
0 = good

Rshape
Base 1

𝜎(𝛻T,𝛻n) 0.99
𝜎(𝛻T), q, 𝑠̂ 0.98
𝜎(𝛻n), q, 𝑠̂ 0.53
𝜎(𝛻T,𝛻n), q, qs 0.76
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𝑘-spectra comparisons isolate the importance of 𝑞 and 𝑠̂
in determining the shape of the 𝑘-spectrum

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: base

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n)

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T), q, s

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: ( n), q, s

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n), q, s

a) b) c)

d) e)

𝑘-spectra shape comparisons for the strong ETG condition
5 ‘big-box’ e- scale sims. 

Pe
sim ~ 30% Pe

exp Pe
sim ~ 70% Pe

exp Pe
sim ~ 95% Pe

exp

Pe
sim ~ 91% Pe

exp Pe
sim ~ 170% Pe

exp

• Synthetic spectra are scaled to 
compare the shape of the 
𝑘-spectrum 𝑆 𝑘 .

• Simulations run with scaled-𝑞, 𝑠̂
(c, d, e) best match the shape 
of the 𝑘-spectrum.

• Validation metric Rshape 𝜖 0, 1
[∗]

[∗] Ricci PoP 2011, Holland PoP 2016
1 = bad
0 = good

RPe Rshape
Base 1 1

𝜎(𝛻T,𝛻n) 0.29 0.99
𝜎(𝛻T), q, 𝑠̂ 0.006 0.98
𝜎(𝛻n), q, 𝑠̂ 0.01 0.53
𝜎(𝛻T,𝛻n), q, qs 1 0.76
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• GYRO sim. for the weak ETG condition 
matched Pe. 

Fluctuation level ratio between strong and weak ETG 
conditions can be quantitatively compared to experiment

Ratio: (Pstrong ETG /P weak ETG )syn

base ( T, n) ( T),q,s ( n),q,s ( T, n),q,s
0

10

20

30

40

50

Experimental 
range

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 , 𝒒, q𝒔 𝛁𝒏 , 𝒒, q𝒔 𝛁𝑻, 𝛁𝒏 , 𝒒, q𝒔

⁄[⟨𝑆⟩strong ETG ⟨𝑆⟩weak ETG]syn
Fluctuation power level ratio

Sim: 1 = bad
0 = good𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 ,

& 𝒒, q𝒔
𝛁𝒏 ,
& 𝒒, q𝒔

𝛁𝑻, 𝛁𝒏 ,
& 𝒒, q𝒔
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• GYRO sim. for the weak ETG condition 
matched Pe. 

• Validation metric Rratio 𝜖 0, 1

Fluctuation level ratio between strong and weak ETG 
conditions can be quantitatively compared to experiment

Ratio: (Pstrong ETG /P weak ETG )syn

base ( T, n) ( T),q,s ( n),q,s ( T, n),q,s
0

10

20

30

40

50

Experimental 
range

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 , 𝒒, q𝒔 𝛁𝒏 , 𝒒, q𝒔 𝛁𝑻, 𝛁𝒏 , 𝒒, q𝒔

⁄[⟨𝑆⟩strong ETG ⟨𝑆⟩weak ETG]syn
Fluctuation power level ratio

Sim: 1 = bad
0 = good

Rratio
Base 0.18

𝜎(𝛻T,𝛻n) 0.05
𝜎(𝛻T), q, 𝑠̂ 0.01
𝜎(𝛻n), q, 𝑠̂ 0.47
𝜎(𝛻T,𝛻n), q, qs 0.72

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 ,
& 𝒒, q𝒔

𝛁𝒏 ,
& 𝒒, q𝒔

𝛁𝑻, 𝛁𝒏 ,
& 𝒒, q𝒔
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• GYRO sim. for the weak ETG condition 
matched Pe. 

• Validation metric Rratio 𝜖 0, 1

Fluctuation level ratio between strong and weak ETG 
conditions can be quantitatively compared to experiment

Ratio: (Pstrong ETG /P weak ETG )syn

base ( T, n) ( T),q,s ( n),q,s ( T, n),q,s
0

10

20

30

40

50

Experimental 
range

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 , 𝒒, q𝒔 𝛁𝒏 , 𝒒, q𝒔 𝛁𝑻, 𝛁𝒏 , 𝒒, q𝒔

⁄[⟨𝑆⟩strong ETG ⟨𝑆⟩weak ETG]syn
Fluctuation power level ratio

Sim: 1 = bad
0 = good𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 ,

& 𝒒, q𝒔
𝛁𝒏 ,
& 𝒒, q𝒔

𝛁𝑻, 𝛁𝒏 ,
& 𝒒, q𝒔

RPe Rshape Rratio
Base 1 1 0.18

𝜎(𝛻T,𝛻n) 0.29 0.99 0.05
𝜎(𝛻T), q, 𝑠̂ 0.006 0.98 0.01
𝜎(𝛻n), q, 𝑠̂ 0.01 0.53 0.47
𝜎(𝛻T,𝛻n), q, qs 1 0.76 0.72
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All comparisons are condensed via a composite metric 
for discrimination between simulations

base ( T, n) ( T,q,s) ( n,q,s) ( T, n,q,s)
0

0.5

1

1.5

2

2.5

3

P e
[M

W
]

Experiment 
(TRANSP) 

Pe comparisons

Sim: 𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 , 𝒒, q𝒔 𝛁𝒏 , 𝒒, q𝒔 𝛁𝑻, 𝛁𝒏 , 𝒒, q𝒔

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: base

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n)

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T), q, s

6 8 10 12 14 16 18
k s

10 0

10 1

High-k diagnostic
Synhk: ( n), q, s

6 8 10 12 14 16 18
k s

High-k diagnostic
Synhk: ( T, n), q, s

𝑘-spectra shape comparisons 

• Composite metric M [*] 𝜖 0, 1 :

[∗] Holland PoP 2016

M
Base 0.67

𝜎(𝛻T,𝛻n) 0.47
𝝈(𝜵T), q, q𝒔 0.40
𝝈(𝜵n), q, q𝒔 0.40
𝜎(𝛻T,𝛻n), q, qs 0.76

Ratio: (Pstrong ETG /P weak ETG )syn

base ( T, n) ( T),q,s ( n),q,s ( T, n),q,s
0

10

20

30

40

50

Experimental 
range

𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏) 𝛁𝑻 , 𝒒, q𝒔 𝛁𝒏 , 𝒒, q𝒔 𝛁𝑻, 𝛁𝒏 , 𝒒, q𝒔

Fluctuation level ratio 
comparisons

Sim:

M = ∑¢ £¢¤¢
∑£¢

Reference for M
0 è perfect agreement 
0.04 è error ~ 1𝜎
0.5 è error ~ 2𝜎
0.9 è error ~ 3𝜎
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Main outcome: Validated e- scale GK simulations in the NSTX 
core using high-k turbulence measurements for the 1st time. 

[*] ST-FNSF, Brown FST 2017
[**] Sorbom FED 2015
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Summary
• 1st simultaneous agreement between exp. & sim. of Pe, fluct. level ratio and 𝒌-

spectra shape of e- scale turbulence in a tokamak è ETG-driven turbulence 
can dominate in core-gradient region of modest beta NSTX H-modes.

[*] ST-FNSF, Brown FST 2017
[**] Sorbom FED 2015

Main outcome: Validated e- scale GK simulations in the NSTX 
core using high-k turbulence measurements for the 1st time. 
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Summary
• 1st simultaneous agreement between exp. & sim. of Pe, fluct. level ratio and 𝒌-

spectra shape of e- scale turbulence in a tokamak è ETG-driven turbulence 
can dominate in core-gradient region of modest beta NSTX H-modes.

• Implemented two equivalent synthetic high-k diagnostics à novel ‘big-box’ e- scale 
is required for quantitative e- scale turb. comparisons.

• High-k 𝑓-spectrum not a critical constraint to discriminate between simulations.
• Importance of (𝑞, 𝑠̂) in matching Pe and determining shape of 𝑘-spectrum.

[*] ST-FNSF, Brown FST 2017
[**] Sorbom FED 2015

Main outcome: Validated e- scale GK simulations in the NSTX 
core using high-k turbulence measurements for the 1st time. 
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Summary
• 1st simultaneous agreement between exp. & sim. of Pe, fluct. level ratio and 𝒌-

spectra shape of e- scale turbulence in a tokamak è ETG-driven turbulence 
can dominate in core-gradient region of modest beta NSTX H-modes.

• Implemented two equivalent synthetic high-k diagnostics à novel ‘big-box’ e- scale 
is required for quantitative e- scale turb. comparisons.

• High-k 𝑓-spectrum not a critical constraint to discriminate between simulations.
• Importance of (𝑞, 𝑠̂) in matching Pe and determining shape of 𝑘-spectrum.

Broader Impact:
• A new framework applicable to additional coherent scattering turbulence 

measurements, like Doppler Backscattering, reflectometry, etc.  
• Improved confidence in turbulent-transport models for prediction and optimization of 

future fusion reactors (ITER, ST-FNSF [*], ARC[**]).
• This work motivates further work in higher 𝜷 and lower collisionality conditions in 

NSTX-U and MAST-U.
• This work has demonstrated a multi-level validation methodology to enable future 

validation efforts of turbulent transport models. [*] ST-FNSF, Brown FST 2017
[**] Sorbom FED 2015

Main outcome: Validated e- scale GK simulations in the NSTX 
core using high-k turbulence measurements for the 1st time
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Thank you
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Backup
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Wavenumber grid from standard e- scale simulation is 
too coarse to resolve measured k

kθρs [min, max] krρs [min, max]
e- scale [1.5, 65 or 86]* [1, 47 or 32]* 
‘Big-box’ e- scale [0.3, 65 or 88]* [0.3, 32]

* max kθρs different in two exp. conditions

Traditional e- scale ‘Big-box’ e- scale 

ch 1
ch 2

ch 3

ch 1
ch 2

ch 3

Computationally
intensive
~ 1-2 M CPU h/sim
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𝐥𝐨𝐠[𝑺 𝒇 ] [m.s]
Simulation

experimental 
noise
at f = 0

Experiment 
𝐥𝐨𝐠[𝑺 𝒇 ] [a.u]

Compare total power Ptot, spectral peak < 𝒇 > and 
spectral width 𝑊𝑓 in a prescribed frequency band
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-3 -2 -1 0 1 2 3
f [MHz]

-16

-15

-14

-13

-12

-11

-10

-9

-8

S(
f) 

[a
.u

.]

Spectral Density comparisons: ch1
Diagnostic (strong ETG)
Syn. (strong ETG)
Diagnostic (weak ETG)
Syn. (weak ETG)

Synthetic 𝑓-spectrum reproduces spectral peak < 𝒇 >, 
close to match spectral width 𝑊𝒇

Exp Sim
< 𝒇 > [MHz] -0.91 -0.89
𝑾f  [MHz] 0.21 0.17

STRONG ETG ch1

Exp Sim
< 𝒇 > [MHz] -1.39 -1.40
𝑾f  [MHz] 0.36 0.26

WEAK ETG ch1

Diagnostic (Strong ETG)
Synthetic (Strong ETG)
Diagnostic (weak ETG)
Synthetic (weak ETG)
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𝑓-spectrum agreement is achieved for all channels

STRONG ETG ch1 WEAK ETG ch1
Exp Sim

< 𝒇 > [MHz] -0.91 -0.89
𝑾f  [MHz] 0.21 0.17

Exp Sim
< 𝒇 > [MHz] -1.39 -1.40
𝑾f  [MHz] 0.36 0.26

-2 -1 0 1 2 3
f [MHz]

S(f)

-2 -1 0 1 2 3
f [MHz]

S(f)

-3 -2 -1 0 1 2 3
f [MHz]

-16

-15

-14

-13

-12

-11

-10

-9

-8
S(f)

Diagnostic (strong ETG)
Synthetic (strong ETG)
Diagnostic (weak ETG)
Synthetic (weak ETG)

Spectral density S f comparisons
ch 1 ch 2 ch 3



7420th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

• Spectral peak < 𝒇 > is dominated by Doppler Shift

- Not a critical constraint on simulation model

• Spectral width 𝑾𝒇 determined by combination of:
- Turbulence spectrum in plasma frame
- 𝑘-resolution of the high-k diagnostic
- 𝑘-grid resolution of the simulation
- Doppler shift 

𝒇𝐭𝐮𝐫𝐛 ≪ 𝑓Z´µ 𝑓Z´µ = 𝑘 ⋅ 𝑣⃗ ∼ 1MHz
𝑓turb ∼ 50 − 100 kHz

• 𝑓-spectrum does not provide critical constraints to discriminate between 
models.

• We find the wavenumber spectrum more useful for selection of simulations.

𝑓-spectrum is determined by combination of turbulence 
characteristics, 𝑘-resolution and Doppler shift
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• Spectral peak < 𝒇 > is dominated by Doppler Shift

- Not a critical constraint on simulation model

• Spectral width 𝑾𝒇 determined by combination of:
- Turbulence spectrum in plasma frame
- 𝑘-resolution of the high-k diagnostic
- 𝑘-grid resolution of the simulation
- Doppler shift 

- Insensitive to the turbulence state

𝒇𝐭𝐮𝐫𝐛 ≪ 𝑓Z´µ 𝑓Z´µ = 𝑘 ⋅ 𝑣⃗ ∼ 1MHz
𝑓turb ∼ 50 − 100 kHz

• 𝑓-spectrum does not provide critical constraints to discriminate between 
models.

• We find the wavenumber spectrum more useful for selection of simulations.

𝑓-spectrum is determined by combination of turbulence 
characteristics, 𝑘-resolution and Doppler shift

Frequency spectra comparisons
• Good agreement is achieved in the frequency spectra. 
• Synthetic frequency spectrum should match experiment 

as a test of simulation and synthetic diagnostic.
• Cannot be used to differentiate between simulations. 
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Synthetic diagnostic revealed high-k measurement is 
closer to ‘streamer’ peak than ‘naïve’ mapping suggests

Spectral density 𝑆 𝑘7, 𝑘9 ∝ 𝛿𝑛) *

𝑘 7
𝜌 %

¾_
¿

𝑘9𝜌% ¾_¿
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Spectral density 𝑆 𝑘7, 𝑘9 ∝ 𝛿𝑛) *

‘Naïve’ mapping (ch1, 2, 3)

𝑘 7
𝜌 %

¾_
¿

𝑘9𝜌% ¾_¿

‘Naïve’ mapping does not take into 
account field-aligned geometry.

Geometric effects (B^VÁ, 𝜅, ∇𝑟 , . .) 
bring the measured 𝑘 close to peak 
in  fluctuation spectrum.

Streamers (     ) : predicted to 
dominate ETG transport in low-beta
ST parameters [*]. 

è Suggests high-k measurement is 
more relevant to ETG transport than 
previously thought. 

New predictions 
(ch1, ch2, ch3)

streamers

[*] Roach PPCF 2005, 2009, Joiner PPCF 2006, Guttenfelder PoP 2011, NF 2013 

Synthetic diagnostic revealed high-k measurement is 
closer to ‘streamer’ peak than ‘naïve’ mapping suggests
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Discharge conditions
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Spectrogram of high-k density fluctuations
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Spectrogram of high-k fluctuations
ch 1, k┴ρs~13-17
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High-k Density Fluctuations are Linearly Stabilized by 
Density Gradient through the Critical Gradient

• R/Lne is a linear stabilizing mechanism
when it dominates the Jenko critical
gradient (Jenko PoP 2001).

• R/Lne increases and fluctuations decrease.

• R/Lne increases at constant (R/LTeexp) -
(R/LTe)crit suggests R/Lne further
nonlinearly stabilizes turbulence.

shot 141767, channel 1
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Weak ETG Condition: electron-scale turbulence 
simulation can match Pe

base ( T, n)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P e
[M

W
]

Pe comparisons using ion-scale sim.
(Weak ETG)

Experiment 
(TRANSP) 

Perform 2 ‘big-box’ e- scale sims. 

‘Big-box’ electron-scale sim
• Base (exp parameters): Pesim ~ 0
• 𝜎(𝛻T, 𝛻n) scan:    Match Pe
• e- scale turbulence close to marginal

Sim: 𝐛𝐚𝐬𝐞 (𝛁𝑻, 𝛁𝒏)
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𝑆
𝑘

m

Absolute fluctuation power (strong ETG)

6 8 10 12 14 16 18 20
k⊥ρs

10-6

10-5

10-4

10-3
Base
σ(∇ T, ∇ n)
σ(∇ T), q, s
σ(∇ n), q, s
σ(∇ T, ∇ n), q, s
Weak ETG: σ(∇T, ∇n)

Weak ETG

• Experiment since not absolutely 
calibrated. 

• Synthetic spectra have absolute units.

Compare fluctuation level ratio between 5 ‘big-box’ sims. 
for the strong ETG to the weak ETG condition 
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Total thermal transport budget Strong ETG

Strong ETG: using exp. �n

GYRO -!(�n) scan

P e
[M

W
]

a) b)

0 1 2 3 4 5
a/L Te

0

0.5

1

1.5

2

2.5

3
Qe [MW], a/L n(EXP)= 1.0048, HIGH ETG

EXP
i scale
e scale
hyb scale (base)
hyb scale ( T), q,s-scan sim.

0 1 2 3 4 5
a/L Te

0

0.5

1

1.5

2

2.5

3
Qe [MW], a/L n(scan)= 0.5024, HIGH ETG

EXP

i scale

e- scale

hyb scale ( T, n)-scan
hyb scale ( n), q, s-scan
hyb scale ( T, n), q,s-scan

P e
[M

W
]

Strong ETG: using scaled 1-!(�n)
EXP (TRANSP)
ion-scale sim
e- scale sim
‘big-box’ e- scale: base sim.
‘big-box’ e- scale: (�T, q, s)-scan sim.

EXP (TRANSP)
ion-scale sim
e- scale sim
‘big-box’ e- scale: (�T, �n)-scan sim.
‘big-box’ e- scale: (�n, q, s)-scan sim.
‘big-box’ e- scale: (�T , �n, q, s)-scan sim.

a/Ltecrit,ETG ~ 0.66 𝜎(a/LTe) ~ 25%, 𝜎(a/Lne) ~ 50%
a/Lte = 3.36, a/L𝑛e = 1.0048, q = 3.79, 𝑠 = 1.8 (toroidal)
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Total thermal transport budget Weak ETG
a) b)Weak ETG: using exp. �n

P e
[M

W
]

P e
[M

W
]

Weak ETG: using scaled 1-!(�n)

Pe
iscale(a/LT=5.1) 

~ 8-10MW

EXP (TRANSP)
ion-scale sim
e- scale sim
‘big-box’ e- scale: 
(�T, �n)-scan sim.

EXP (TRANSP)
ion-scale sim
e- scale sim
‘big-box’ e- scale: base sim.

a/Ltecrit,ETG ~ 3 𝜎(a/LTe) ~ 30%, 𝜎(a/Lne) ~ 30%, 
a/L𝑇𝑒 = 4.5, a/L𝑛e = 4.06, q = 3.07, 𝑠 = 2.35 (slab)


