

Validation of gyrokinetic simulations in NSTX including comparisons with a synthetic diagnostic for high-k scattering

J. Ruiz Ruiz^{1,2}

W. Guttenfelder³, A. E. White¹, N. Howard¹, N. F. Loureiro¹, J. Candy⁸, Y. Ren³, S.M. Kaye³, B. P. LeBlanc³, E. Mazzucato³, K.C. Lee⁴, C.W. Domier⁵, D. R. Smith⁶, H. Yuh⁷ **1.** MIT **2**. Oxford **3**. PPPL **4**. NFRI **5**. UC Davis **6**. U Wisconsin **7**. Nova Photonics, Inc. **8**. General Atomics

20th International Spherical Tokamak Workshop ENEA, Frascati, Oct 28-31, 2019

Massachusetts Institute of Technology

Work supported by DOE contracts DE-AC02-09CH11466 and DE-AC02-05CH11231

Spherical tokamaks (STs) minimize time-spent by plasma particles in the 'unstable', bad-curvature side

e.g: JET, Alcator C-Mod, DIII-D, AUG, etc.

Spherical tokamak: e.g: NSTX (PPPL), MAST (CCFE)

This talk will focus on the Spherical Torus (ST) NSTX

Spherical tokamaks:

- Small aspect ratio
 A
- High-beta β
- High shaping of magnetic surfaces
- High toroidal rotation (if neutral beam driven)

[*] Rewoldt PoP 1996, Kim PhysFlu 1993, Kaye NF 2007

Can improve - macro & micro stability [*]

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

ST H-modes have reported neoclassical levels of ion thermal transport, transport dominated by electron channel

Ion thermal transport (P_i) observed close to neoclassical levels in NSTX NBI heated H-modes, due to *suppression of ion scale turbulence by ExB shear, beta, strong plasma shaping* [*Rewoldt PoP 1996, Kaye NF 2007*].

ST H-modes have reported neoclassical levels of ion thermal transport, transport dominated by electron channel

- Ion thermal transport (P_i) observed close to neoclassical levels in NSTX NBI heated H-modes, due to *suppression of ion scale turbulence by ExB shear, beta, strong plasma shaping* [*Rewoldt PoP 1996, Kaye NF 2007*].
- Electron thermal transport is always anomalous.

- Ion thermal transport (P_i) observed close to neoclassical levels in NSTX NBI heated H-modes, due to *suppression of ion scale turbulence by ExB shear, beta, strong plasma shaping* [*Rewoldt PoP 1996, Kaye NF 2007*].
- Electron thermal transport is always anomalous.
- This work will compare predictions of **electron-scale turbulence** and transport to experimental measurements at NSTX:
 - Electron thermal power P_e [MW] : \rightarrow using gyrokinetic simulation (GYRO).
 - Turbulence fluctuations : \rightarrow using gyrokinetic sim. & synthetic diagnostic.

- Ion thermal transport (P_i) observed close to neoclassical levels in NSTX NBI heated H-modes, due to suppression of ion scale turbulence by ExB shear, beta, strong plasma shaping [Rewoldt PoP 1996, Kaye NF 2007].
- Electron thermal transport is always anomalous.
- This work will compare predictions of **electron-scale turbulence** and transport to experimental measurements at NSTX:
 - Electron thermal power P_e [MW] : \rightarrow using gyrokinetic simulation (GYRO).
 - Turbulence fluctuations : \rightarrow using gyrokinetic sim. & synthetic diagnostic.

Outline

- Turbulence fluctuation measurement (high-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons

Outline

- Turbulence fluctuation measurement (high-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons

View from top of NSTX

NSTX-U

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

[*] Mazzucato PoP 2003, PPCF 2006

NSTX-U

High-k scattering provides measurements of frequency and wavenumber spectra of electron-scale turbulence

High-k scattering provides measurements of frequency and wavenumber spectra of electron-scale turbulence

High-k scattering provides measurements of frequency and wavenumber spectra of electron-scale turbulence

Outline

- Turbulence fluctuation measurement (High-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons

Accurate high-k turbulence comparisons require 'bigbox' electron-scale simulation

- **Ion-scale** turbulence simulation $(k_{\theta}\rho_s \leq 1)$.
- Traditional e- scale sim. $(k_{\theta}\rho_s \gtrsim 1)$ has too coarse wavenumber resolution for synthetic diagnostic deployment.

Accurate high-k turbulence comparisons require 'bigbox' electron-scale simulation

- **Ion-scale** turbulence simulation $(k_{\theta}\rho_s \leq 1)$.
- Traditional e- scale sim. $(k_{\theta}\rho_s \gtrsim 1)$ has too coarse wavenumber resolution for synthetic diagnostic deployment.
- **'Big-box' electron-scale** sim. contains same physics (ETG), but finer wavenumber grid for synthetic diagnostic deployment $(k_{\theta}\rho_s \gtrsim 0.3)$.

Accurate high-k turbulence comparisons require 'bigbox' electron-scale simulation

- **Ion-scale** turbulence simulation $(k_{\theta}\rho_s \leq 1)$. •
- **Traditional e- scale** sim. $(k_{\theta}\rho_s \gtrsim 1)$ has too coarse wavenumber resolution for ٠ synthetic diagnostic deployment.
- 'Big-box' electron-scale sim. contains same physics (ETG), but finer wavenumber grid for synthetic diagnostic deployment ($k_{\theta}\rho_s \gtrsim 0.3$).
- Experimental profiles used as input to GYRO
 - Local simulations performed at scattering location (r/a \sim 0.7, R \sim 135 cm).
 - 3 kinetic species, D, C, e- (Z_{eff}~1.85-1.95) ۲
 - Electromagnetic: $A_{\parallel}+B_{\parallel}$ ($\beta_{e} \sim 0.3\%$). ٠
 - Collisions ($\nu_{ei} \sim 1 c_s/a$).
 - ExB shear ($\gamma_{\rm E}$ ~0.13-0.16 c_s/a) + parallel flow shear ($\gamma_{\rm p}$ ~ 1-1.2 c_s/a)
 - Fixed boundary conditions (radial buffer region). •

Outline

- Turbulence fluctuation measurement (High-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons

Performed an extensive validation effort to study electron thermal transport in a *modest-beta* NSTX H-mode

 NBI heated H-mode with controlled current ramp-down; two steady discharge phases, little MHD activity.

Performed an extensive validation effort to study electron thermal transport in a *modest-beta* NSTX H-mode

- NBI heated H-mode with controlled current ramp-down; two steady discharge phases, little MHD activity.
- Local increase in |∇n| → ETG stabilization [*], observed in high-k fluctuation spectra.

[*] ∇n stabilization of ETG: Ren PRL 2011, Ruiz Ruiz PoP 2015

NSTX-U

Performed an extensive validation effort to study electron thermal transport in a *modest-beta* NSTX H-mode

- NBI heated H-mode with controlled current ramp-down; two steady discharge phases, little MHD activity.
- Local increase in |∇n| → ETG stabilization [*], observed in high-k fluctuation spectra.
- In this work, perform sensitivity scans in {∇T_e, ∇n_e, q, ŝ} to compare:
 - Electron thermal power P_e (TRANSP) via sensitivity scans of GYRO sims.
 - High-k turbulence freq. and *k*-spectra via synthetic diagnostic for GYRO.
- Details in Ruiz Ruiz PPCF 2019.

[*] ∇n stabilization of ETG: Ren PRL 2011, Ruiz Ruiz PoP 2015

High β_e : Kinetic ballooning mode (KBM), micro-tearing mode (MT).

High β_e : Kinetic ballooning mode (KBM), micro-tearing mode (MT).

(b) High $\beta_e \cdot a/L_{\text{Te}}$: MT. High $\alpha_{\text{MHD}} (\propto p')$: KBM.

(a) Low β_e : Electrostatic ITG/TEM/ETG. High β_e : Kinetic ballooning mode (KBM), micro-tearing mode (MT).

(b) High
$$\beta_e \cdot a/L_{\text{Te}}$$
: MT.
High $\alpha_{\text{MHD}} (\propto p')$: KBM
(c) $a/L_{\text{Te}} > a/L_{\text{Te,crit}}$: ETG.

Outline

- Turbulence fluctuation measurement (High-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons

Ion-scale turbulence is predicted to play a negligible role in both conditions

Strong ETG condition

• Ion-scale sim. predicts turbulence is nonlinearly suppressed by ExB shear.

Ion-scale turbulence is predicted to play a negligible role in both conditions

Strong ETG condition

• Ion-scale sim. predicts turbulence is nonlinearly suppressed by ExB shear.

Weak ETG condition

- Ion-scale sim. shows turbulence can be destabilized within uncertainty in drive terms.
- BUT ion thermal transport is close to neoclassical levels
 ion-scale turbulence plays a negligible role

Ion-scale turbulence is predicted to play a negligible role in both conditions

Strong ETG condition

• Ion-scale sim. predicts turbulence is nonlinearly suppressed by ExB shear.

Weak ETG condition

- Ion-scale sim. shows turbulence can be destabilized within uncertainty in drive terms.
- BUT ion thermal transport is close to neoclassical levels
 ion-scale turbulence plays a negligible role

Ion-scale turbulence contributions can be neglected in the strong and weak ETG conditions

Strong ETG condition: electron-scale turbulence can match P_e within experimental uncertainty

Perform sensitivity scans maximizing turbulence drive in 5 'big-box' e- scale sims.

- 1- $\sigma(\nabla T, \nabla n)$ max. uncertainty.
- 10% q, 20% ŝ

Simulation:

Strong ETG condition: electron-scale turbulence can match P_e within experimental uncertainty

Simulation: base

NSTX-U

Strong ETG condition: electron-scale turbulence can match P_e within experimental uncertainty

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

- Electron-scale turbulence can explain P_e .
- Scanning q and \hat{s} is needed for matching P_e .

Outline

- Turbulence fluctuation measurement (High-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons

Real space formulation: $\Psi_{R}(\vec{r})$

k –space formulation: $\psi_{\kappa}(\vec{k} - \vec{k}_0)$

[*] Ruiz-Ruiz to be submitted

k –space formulation: $\psi_{\kappa}(\vec{k} - \vec{k}_0)$

[*] Ruiz-Ruiz to be submitted

k –space formulation: $\psi_{\kappa}(\vec{k} - \vec{k}_0)$

[*] Ruiz-Ruiz to be submitted

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Outline

- Turbulence fluctuation measurement (High-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Frequency spectra comparisons

- Good agreement is achieved in the frequency spectra.
- Synthetic frequency spectrum should match experiment as a test of simulation and synthetic diagnostic.
- Cannot be used to differentiate between simulations.

Outline

- Turbulence fluctuation measurement (High-k scattering).
- GYRO simulation details.
- NSTX H-mode discharge under study.
- Electron thermal transport comparisons.
- Electron-scale turbulence comparisons:
 - Synthetic diagnostic description
 - f-spectra comparisons
 - k-spectra comparisons
 - 5 'big-box' e- scale sims for the strong ETG case
 - 1 'big-box' e- scale sim for the weak ETG case

k-spectra shape comparisons for the strong ETG condition 5 'big-box' e- scale sims.

 Synthetic spectra are scaled to compare the shape of the k-spectrum S(k).

[*] Ricci PoP 2011, Holland PoP 2016

NSTX-U

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

 Synthetic spectra are scaled to compare the *shape* of the *k*-spectrum S(k).

[*] Ricci PoP 2011, Holland PoP 2016

NSTX-U

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

- Synthetic spectra are scaled to compare the *shape* of the k-spectrum S(k).
- Simulations run with scaled-q, \hat{s} (c, d, e) best match the shape of the k-spectrum.

[*] Ricci PoP 2011, Holland PoP 2016

- Synthetic spectra are scaled to compare the *shape* of the k-spectrum S(k).
- Simulations run with scaled-q, \hat{s} (c, d, e) best match the shape of the k-spectrum.

• Validation metric
$$\mathsf{R}_{\mathsf{shape}} \epsilon[0, 1]^{[*]}$$

	R _{shape}
Base	1
$\sigma(\nabla T, \nabla n)$	0.99
$\sigma(\nabla T)$, q, \hat{s}	0.98
$\sigma(\nabla n), q, \hat{s}$	0.53
$\sigma(\nabla T, \nabla n), q, \hat{s}$	0.76

[*] Ricci PoP 2011, Holland PoP 2016

NSTX-U

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

1 = bad

0 = good

[*] Ricci PoP 2011, Holland PoP 2016

- Synthetic spectra are scaled to compare the *shape* of the k-spectrum S(k).
- Simulations run with scaled-q, \hat{s} (c, d, e) best match the shape of the *k*-spectrum.

• Validation metric
$$\mathsf{R}_{\mathsf{shape}} \epsilon[0, 1]^{[*]}$$

• • Pe	■shape
1	1
0.29	0.99
0.006	0.98
0.01	0.53
1	0.76
	1 0.29 0.006 0.01 1

NSTX-U

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

1 = bad

0 = good

Fluctuation level ratio between strong and weak ETG conditions can be quantitatively compared to experiment

Fluctuation level ratio between strong and weak ETG conditions can be quantitatively compared to experiment

- GYRO sim. for the *weak ETG* condition
- Validation metric $R_{ratio} \in [0, 1]$

	R _{ratio}
Base	0.18
<i>σ</i> (<i>∇</i> T, <i>∇</i> n)	0.05
$\sigma(\nabla T)$, q, \hat{s}	0.01
$\sigma(\nabla \mathbf{n}), \mathbf{q}, \hat{s}$	0.47
$\sigma(\nabla T, \nabla n), q, \hat{s}$	0.72

1 = bad0 = good

Fluctuation level ratio between strong and weak ETG conditions can be quantitatively compared to experiment

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

All comparisons are condensed via a composite metric for discrimination between simulations

Main outcome: Validated e- scale GK simulations in the NSTX core using high-k turbulence measurements for the 1st time.

[*] ST-FNSF, Brown FST 2017 [**] Sorbom FED 2015

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Main outcome: Validated e- scale GK simulations in the NSTX core using high-k turbulence measurements for the 1st time.

Summary

Main outcome: Validated e- scale GK simulations in the NSTX core using high-k turbulence measurements for the 1st time.

Summary

- 1st simultaneous agreement between exp. & sim. of P_e, fluct. level ratio and k-spectra shape of e- scale turbulence in a tokamak → ETG-driven turbulence can dominate in core-gradient region of modest beta NSTX H-modes.
- Implemented two equivalent synthetic high-k diagnostics → novel 'big-box' e- scale is required for quantitative e- scale turb. comparisons.
- High-k *f*-spectrum not a critical constraint to discriminate between simulations.
- Importance of (q, \hat{s}) in matching P_e and determining shape of k-spectrum.

Main outcome: Validated e- scale GK simulations in the NSTX core using high-k turbulence measurements for the 1st time

Summary

- 1st simultaneous agreement between exp. & sim. of P_e, fluct. level ratio and k-spectra shape of e- scale turbulence in a tokamak → ETG-driven turbulence can dominate in core-gradient region of modest beta NSTX H-modes.
- Implemented two equivalent synthetic high-k diagnostics → novel 'big-box' e- scale is required for quantitative e- scale turb. comparisons.
- High-k *f*-spectrum not a critical constraint to discriminate between simulations.
- Importance of (q, \hat{s}) in matching P_e and determining shape of k-spectrum.

Broader Impact:

- A new framework applicable to additional coherent scattering turbulence measurements, like Doppler Backscattering, reflectometry, etc.
- Improved confidence in turbulent-transport models for prediction and optimization of future fusion reactors (ITER, ST-FNSF ^[*], ARC^[**]).
- This work motivates further work in higher β and lower collisionality conditions in NSTX-U and MAST-U.
- This work has demonstrated a multi-level validation methodology to enable future validation efforts of turbulent transport models.

[*] ST-FNSF, Brown FST 2017 [**] Sorbom FED 2015

Thank you

MIT PhD Thesis Committee

Prof. Anne White Dr. Nathan Howard Prof. Nuno Loureiro

Princeton Plasma Physics Lab (PPPL)

Dr. Walter Guttenfelder Dr. Yang Ren

Backup

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Wavenumber grid from standard e- scale simulation is too coarse to resolve measured k

* max $\mathbf{k}_{\theta} \mathbf{\rho}_{s}$ different in two exp. conditions

Compare total power P_{tot} , spectral peak < f > and spectral width W_f in a prescribed frequency band

Synthetic *f*-spectrum reproduces spectral peak < f >, close to match spectral width W_f

f-spectrum agreement is achieved for all channels

f-spectrum is determined by combination of turbulence characteristics, *k*-resolution and Doppler shift

Spectral peak < f > is dominated by Doppler Shift

 $f_{\text{turb}} \ll f_{\text{Dop}}$

- Not a critical constraint on simulation model

- **Spectral width** W_f determined by combination of:
 - Urbulence spectrum in plasma frame
 - k-resolution of the high-k diagnostic
 - *k*-grid resolution of the simulation
 - Doppler shift
- *f*-spectrum does not provide critical constraints to discriminate between models.
- We find the wavenumber spectrum more useful for selection of simulations.

 $f_{\text{Dop}} = \vec{k} \cdot \vec{v} \sim 1 \text{MHz}$

 $f_{\rm turb} \sim 50 - 100 \, \rm kHz$

f-spectrum is determined by combination of turbulence characteristics, *k*-resolution and Doppler shift

Spectral peak < f > is dominated by Doppler Shift

 $f_{\text{turb}} \ll f_{\text{Dop}}$

- Not a critical constraint on simulation model

- Spectral width W_f determined by combination of:
 - Turbulence spectrum in plasma frame
 - k-resolution of the high-k diagnostic
 - *k*-grid resolution of the simulation
 - Doppler shift

Frequency spectra comparisons

- Good agreement is achieved in the frequency spectra.
- Synthetic frequency spectrum should match experiment as a test of simulation and synthetic diagnostic.
- Cannot be used to differentiate between simulations.

pns.

 $f_{\rm Dop} = \vec{k} \cdot \vec{v} \sim 1 \rm MHz$

 $f_{\rm turb} \sim 50 - 100 \, \rm kHz$

Synthetic diagnostic revealed high-k measurement is closer to 'streamer' peak than 'naïve' mapping suggests

Synthetic diagnostic revealed high-k measurement is closer to 'streamer' peak than 'naïve' mapping suggests

NSTX-U

- account field-aligned geometry. Geometric effects (B_{ref} , κ , $|\nabla r|$,..) bring the measured k close to peak in fluctuation spectrum. Streamers (\star) : predicted to dominate ETG transport in *low-beta* -9.5 ST parameters [*].
- → Suggests high-k measurement is more relevant to ETG transport than ^{-10.5} previously thought.

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Discharge conditions

NSTX-U

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019

Spectrogram of high-k density fluctuations

High-k Density Fluctuations are Linearly Stabilized by Density Gradient through the Critical Gradient

R/L_{ne} is a *linear* stabilizing mechanism when it dominates the Jenko critical gradient (Jenko PoP 2001).

$$(R/L_{Te})_{crit} = \max \begin{cases} 0.8R/L_{ne} \\ f(\tau, \hat{s}/q, \varepsilon, \varepsilon \, d\kappa \, / \, d\varepsilon) \end{cases}$$

- *R/L_{ne}* increases and fluctuations decrease.
- R/L_{ne} increases at constant (R/L_{Te}^{exp}) (R/L_{Te})_{crit} suggests R/L_{ne} further nonlinearly stabilizes turbulence.

$$(R/L_{Te})_{crit} Jenko$$

$$f(\tau, \hat{s} / q, \varepsilon, \varepsilon \, d\kappa / d\varepsilon) \quad toroidal$$

$$0.8R / L_{ne} \quad slab$$

Weak ETG Condition: electron-scale turbulence simulation can match P_e

Perform 2 'big-box' e- scale sims.

'Big-box' electron-scale sim

- Base (exp parameters): P_e^{sim} ~ 0
- $\sigma(\nabla T, \nabla n)$ scan: Match P_e
- e- scale turbulence close to marginal

Compare fluctuation level ratio between 5 'big-box' sims. for the strong ETG to the weak ETG condition

- Experiment since not absolutely calibrated.
- Synthetic spectra have absolute units.

Total thermal transport budget Strong ETG

Total thermal transport budget Weak ETG

20th International Spherical Tokamak Workshop, ENEA, Frascati, October 28-31, 2019