Configuration Studies for a Low-Aspect-Ratio Liquid-Metal-Wall Sustained High-Power-Density Tokamak Facility

20th International Spherical Torus Workshop (ISTW2019) 28-31 October 2019 Frascati, Italy

Authors: J. Menard, T. Brown, N. Bertelli, R. Maingi, R. Majeski, Y. Zhai

*This work supported by DOE contract DE-AC02-09CH11466

Outline

Motivations for study

Key core-edge integration gaps

Configuration study results

Summary

Recent National Academy study considered next-step Sustained High Power Density (SHPD) Facility for U.S.

The SHPD facility was described as a possible bridge to a Compact Fusion Pilot Plant (CFPP) and would either be a **new facility or an upgrade to an existing facility**

Proposed SHPD mission: bridge confinement + sustainment gap

Longest-pulse LHD plasmas terminated by C and Fe flakes after ~1 hour at P_{heat} ~ 1MW

FIGURE 12. Plasma and heating parameters of termination phase of 48 min operation.

FIGURE 13. Photo of sparks near ICRF antenna of 48 min operation at termination phase

High-power and steady-state operation of ICRF heating in the large helical device

Cite as: AIP Conference Proceedings 1689, 030009 (2015); https://doi.org/10.1063/1.4936474 Published Online- 10 December 2015

Mutoh, T. Seki, K. Saito, H. Kasahara, R. Seki, S. Kamio, R. Kumazawa, S. Kubo, T. Shimozuma, . Yoshimura, H. Igami, H. Takahashi, T. Ii, R. Makino, K. Nagaoka, G. Nomura, T. Shinya, and LHD Experiment Group

Motivations for CFPP-prototypical SHPD facility

- Integrate edge/wall solutions + high-performance core plasma
- For <u>steady-state tokamak option</u>, need simultaneous CFPPrelevant high plasma pressure and high bootstrap fraction
 - Pulsed tokamak reactors would have reduced bootstrap fraction required, but may have challenges with thermal & mechanical cyclic fatigue (TBD)
- CFPP-level pressure is needed to demonstrate relevant:
 - Divertor power density to challenge divertor at CFPP-relevant levels
 - Pressure in SOL representative detachment and control
 - First-wall erosion rate representative mass transport and migration and mass removal using configuration and actuators prototypical of a CFPP
- R&D + test PFC and actuator technologies for very long-pulses with CFPP-level plasma / thermal / EM / mechanical conditions

Science and technology **Gaps** to a steady-state Compact Fusion Pilot Plant (CFPP)

Abbreviated / simplified listing of Key Gaps:

- 1. Access reliable sustainment of enhanced energy confinement
- 2. Demonstrate efficient external non-inductive current-drive methods
- 3. Demonstrate pilot-relevant power and particle exhaust handling
- 4. Demonstrate pilot-relevant first-wall, components, maintenance
- 5. Avoid transient events that might damage facility components
- 6. Develop high-current-density and high-field toroidal field magnets
- 7. Develop fusion-nuclear components for pilot-relevant performance

Focus of this presentation (see backup for gaps 5-7) **Gaps 1, 2:** NSTX-U, DIII-D, JT-60SA well equipped to develop high-confinement, high-β, full non-inductive core scenarios

- τ_E: DIII-D, NSTX have demonstrated H₉₈ > 1.5 (at least transiently), elevated H₉₈ planned for JT-60SA
- β: NSTX-U, DIII-D, JT-60SA utilize close-fitting passive conductors and 3D control coils to access high β_N
- J_{NI}: All 3 have on and off-axis CD for current profile variation with full noninductive with elevated f_{BS} > 70%

Gap 3: Example power exhaust parameters

From R. Goldston - Plasma Phys. Control. Fusion 59 (2017) 055015										
Parameter / Device	C-Mod	AUG	JET	ITER	FNSF (A=4)	EU Demo1		Low-A PP	ARC	
Aspect Ratio A	3.2	3.1	3.2	3.1	4.0	3.1		2.0	3.0	ITER
P _{sep} [MW]	3.83	10.7	14	100	96	154.7		100.0	95.3	
B _⊤ [T]	5.47	2.5	2.5	5.3	7	5.7		4.0	9.2	CFPP:
R ₀ [m]	0.7	1.6	2.9	6.2	4.5	9.1		3.0	3.3	
P _{sep} / R [MW / m]	5.5	6.7	4.8	16.1	21.3	17.0		33.3	28.9	16-33
P _{sep} B _T / R [MW T / m]	30.1	16.8	12.0	85.3	149.1	96.9		133.3	265.8	85-266
I _P [MA]	0.82	1.2	2.5	15	7.5	20		12.5	7.8	
a [m]	0.22	0.52	0.9	2	1.13	2.94		1.5	1.1	
К ₉₅	1.51	1.63	1.73	1.8	2.1	1.7		2.25	1.66	
$\langle B_{p} \rangle$ [T]	0.58	0.34	0.39	1.03	0.81	0.98		0.90	0.97	0.8-1
q _{cyl}	3.78	3.16	2.79	2.42	3.55	2.62		4.35	4.74	
n _{GW} [10 ²⁰ m ⁻³]	5.39	1.41	0.98	1.19	1.87	0.74		1.77	2.05	
Projected c _N for detachment	1.0%	4.0%	4.1%	10.1%	8.6%	18.8%		6.6%	12.2%	6-19%

Assume same simple fixed n_{sep} / n_{GW} scaling from ASDEX-U

Gap 3: Example power exhaust parameter gaps

Parameter / Device	NSTX-U I _P =2MA	NSTX-U I _P =1MA	DIII-D I _P =2MA	DIII-D I _P =1MA	JT-60SA (Inductive)	JT-60SA (Fully Non- Inductive)	Divertor Test Tokamak (Italy DTT)	SPARC	Low-A Pilot Plant	ARC
Aspect Ratio A	1.7	1.7	2.8	2.8	2.5	2.7	3.1	3.3	2.0	3.0
P _{sep} [MW]	12.7	12.7	16.7	16.7	27.3	24.7	32.0	30.0	100.0	95.3
Β _T [T]	1	1	2.1	2.1	2.25	1.72	6	12	4	9.2
R ₀ [m]	0.94	0.94	1.6	1.6	2.96	2.97	2.15	1.65	3	3.3
P _{sep} / R [MW / m]	13.5	13.5	10.4	10.4	9.2	8.3	14.9	18.2	33.3	28.9
P _{sep} B _T / R [MW T / m]	13.5	13.5	21.9	21.9	20.8	14.3	89.2	218.2	133	266
I _P [MA]	2.0	1.0	2.0	1.0	5.5	2.3	6.0	7.5	12.5	7.8
a [m]	0.55	0.55	0.58	0.58	1.18	1.11	0.70	0.50	1.50	1.10
к ₉₅	2.25	2.25	1.89	1.89	1.72	1.83	1.71	1.71	2.25	1.66
(Β _p) [T]	0.39	0.20	0.43	0.21	0.62	0.27	1.19	2.07	0.90	0.97
B _{p-mp} [T]	0.72	0.36	0.78	0.39	1.12	0.50	2.16	3.77	1.64	1.76
λ_q [mm] (Eich NF2013 Reg #14)	1.91	4.35	1.74	3.96	1.12	2.96	0.51	0.26	0.71	0.66
λ _{q-int} [mm]	3.41	7.79	3.11	7.09	2.00	5.30	0.92	0.47	1.27	1.18
q ₀ [GW / m ²]	1.3	1.2	2.2	1.9	2.2	1.3	10.8	29.5	15.4	31.1
n _{GW} [10 ²⁰ m ⁻³]	2.10	1.05	1.89	0.95	1.26	0.59	3.90	9.55	1.77	2.05
Projected c _N for detachment	1.9%	3.9%	3.6%	7.2%	5.0%	8.9%	3.1%	1.7%	6.6%	12.2%

P B_T / R (and q_{||}) 10x higher in CFPPs than accessible in existing/ near-term devices, but iDTT, SPARC access CFPP-relevant values

Lower-I_P JT-60SA (and DIII-D) scenarios access CFPP-relevant detachment regime

Assume same simple fixed n_{sep} / n_{GW} scaling from ASDEX-U

PFC survivability during any off-normal re-attachment events is major concern for CFPP (see Goldston vapor box work)

Gap 4: Projected first-wall erosion in EU-DEMO / CFPP

Figure 5. The poloidal profile of the wall erosion rate (solid line) and contributions to it from c-x atoms (dashed line), highly charged impurity ions (dotted line) and the main ions during ELMs (dashed-dotted line).

- Erosion largest on outboard
 - 0.2-0.3mm / fpy peak outboard
 - Charge-exchange dominates
 - 10x lower on top / bottom / inboard
- Highly charged impurity ions dominant top / bottom / inboard
- 0.02 mm / fpy corresponds to ~1.6 kg of W per day
- CFPP first-wall surface area is ~15-30% of EU-DEMO:
 - 0.2-0.5 kg / day W for R=3m A=2-3 HTS Pilot Plant (P_{fus} ~ 500MW)

Gap 4: Erosion sensitive to transport, outboard gap

Table 2

Investigations of the first-wall erosion of DEMO with the CELLSOR code M. Beckers et al. / Nuclear Materials and Energy 12 (2017) 1163–1170

Fig. 6. Net erosion rate in mm/fpy by ions (D, T, He, N, W) and neutrals (D, T) for the 6 SOL test cases (Table 2).

Modeled SOL physics cases distinguished by diffusive and convective radial transport strength and separatrix density.

Test case	D_{\perp} [m ² /s]	v_{\perp} [m/s]	$n_{sep} \ [e^{20} \ { m m}^{-3}]$	$\Gamma_{\perp} (\Delta_{SOL} = 0.1 \text{ m}) [10^{20} \text{ m}^{-2} \text{s}^{-1}]$
Reference	0.5	5	0.5	2.92
Weak transport	0.1	0.1	0.5	0.07
Strong transport	1	5	0.5	6.61
Low density	0.5	5	0.25	1.36
High density	0.5	5	1	6.75
Density shoulder	0.5	12.5	0.5	24.09

- Low transport or large gaps can reduce risk to PFCs, but...
- 0.01-1 mm / fpy → 0.8-80 kg
 W erosion / day (EU-DEMO)
- What is impact of erosion?
 - Dust formation, T retention?
 - Impact on core plasma, radiation?
 - Transported to divertor? other?

Erosion projections and results reinforce need for significant improvement in research capability

- Independent of the magnetic configuration, need to develop and demonstrate very long-pulses at high performance with no mass accumulation / plasma termination
 - Pulse lengths of at least 1 hour to 1 day likely required to gain confidence in solutions
- Need facility that can demonstrate active mass removal from eroded divertor and/or first-wall
- Liquid metals may offer a solution for self-healing walls and flow-through removal of solid divertor/wall eroded materials

After characterizing low- v^* + high- β ST performance with C PFCs, NSTX-U will play important role in high-Z + liquid metal PFC R&D

- NSTX-U intends to transition to all high-Z PFCS
 - Avoid carbon, due to formation of compounds that contaminate Li (LTX, NSTX LLD experience)
 - Incorporate coming LTX- β results on high τ_E , flat T_e profiles, importance of liquid vs solid walls
- Low heat flux regions would have pre-filled tiles or evaporated coatings for particle control
 - Cryo-pump could be installed as a future option for a detailed comparison with Li pumping
- High heat flux regions would have flowing liquid lithium module(s) for power exhaust
- Measure erosion, re-deposition, mass transport to/from FW and divertor → inform SHPD, CFPP
- Collaborate with and inform new FES LM PFC Development Program

Outline

Motivations for study

Key core-edge integration gaps

Configuration study results

Summary

Range of SHPD configurations being investigated

- Assessing R=1 to 2m, A=2-2.6 (A=2.4 for detailed layouts)
- Detailed layouts developed for R=1.0m, 1.2m

Key features:

- Flexible exhaust config.
 - Solid and liquid metal PFCs
 - Vertical target, long-leg div.
 - Double null capability
- High current density TF and inboard PF coils
- Vertical maintenance
- $B_T = 4-7T$ field at R_0

R=1.0m, A=2.4

Scoping studies for SHPD performance vs. A and R

A = 1.6 - 2.1 potentially advantageous for confinement

Need R \geq 1.2m for OH-assisted ramp-up at A ~ 2

- Smaller R at A ~ 2 does not provide sufficient space for solenoid for ramp-up
- R \geq 1.2m, A \geq 2 can access I_P \geq 1.4x higher than non-inductive value

Scaling of 0D power exhaust parameters

← R=1.0m ← R=1.2m ← R=1.4m ← R=1.6m ← R=1.8m ← R=2.0m

Matching above CFPP 0D power exhaust parameters drives SHPD R ≥ 1.2m

Several planned / proposed devices projected to access high pressure and q_{II0} of FNSF/CFPP

SHPD with R=1.2m, A=2-2.4, 50MW provides unique access to high pressure + high-f_{BS} regime for steady-state FNSF/CFPP

SHPD with R=1.2m, A=2-2.4, 50MW provides unique access to high q_{II0} + high-f_{BS} regime for steady-state FNSF/CFPP

Exploring designs that can study range of A

- Range of aspect ratios (A=2-2.6) supportable in single vessel
- Working to optimize vessel shape to allow κ=2.5 at A=2, lower κ at higher A
- Coil current density in inner divertor increases to high values for highest A
 - Need to increase CX area of inboard divertor coils to handle current
- Divertor strike-points have significant spatial variation – would need to change-out divertor/FW for lower A-s

Liquid metal systems included up-front in design

Facilities designed for other missions may not be compatible with integrated capabilities needed for U.S. CFPP vision

- Cross-sectional image of R=1m, A=2.4 SHPD concept capable of testing:
 - vapor box divertors
 - slow-flow LM first-walls
 - fast-flow LM divertors
 - DCLL test blankets

...potentially simultaneously

a) Schematic diagram of the actively-supplied, capillary-restrained system

b) Vapor box divertor

c) T-tube heat exchanger design concept

Example Li magnetic pump system for fast flow

Example modular first-wall structures, blankets, supports for LM technology development flexibility

Summary: SHPD would close core-edge integration physics and technology gaps to steady-state CFPP

- Unique access to simultaneous $\langle p \rangle$, q_{\parallel} , f_{BS} of steady-state CFPP
 - Existing/planned devices cannot demonstrate integrated CFPP core+edge
- Device designed around modular divertor with space and access for different types of solid/liquid divertors, first-wall, LM plumbing
- Unique hot-wall capability to vary first wall boundary conditions
 - Controlled liquid metal studies, impact of retention / permeation / migration
 - Very high τ_E may require low(er) recycling from liquid Li-wall pumping (?)
- Platform for technology integration: liquid metals, steady-state power-handling, current-drive, control, disruption avoidance
- Develop techniques for very-long-pulse erosion mass removal
- Combine with high core performance to develop confidence to proceed to long-pulse nuclear operations in FNSF/CFPP

JT-60SA / low n_e SHPD and ITER bracket ρ^* and ν^* expected in CFPPs

Gap 6: Using high-current-density superconducting coils → compact pilot plant optimal aspect ratio A ~ 2 to 3

J.E. Menard, "Compact steady-state tokamak performance dependence on magnet and core physics limits." (2019) Phil. Trans. R. Soc. A 377: 20170440.

- Private industry R&D on HTS TF, PF
- NSTX-U, MAST-U, JT-60SA, DIII-D, AUG span this A range and can inform the integrated core scenarios and advanced divertor physics

Technical motivations for this study

- Utilizing high-Z solid (such as W) PFCs in Pilot Plant has risks:
 - Material damage from melting, erosion and re-deposition, and neutrons
 - High-Z impurity accumulation, associated core plasma radiative collapse
 - Thermal pedestal energy confinement reduction (from increased gas puff?)
 - Compatibility with no-ELM, elevated H₉₈, full non-inductive not established
- Liquid metal (LM) walls and divertors are increasingly being studied as a possible means of addressing these challenges
 - FESS recently investigated liquid metal divertors for FNSF configuration
- This work \rightarrow explore sustained high power density tokamak
 - Build upon results from test-stands/Magnum-PSI, LTX, EAST, NSTX-U
 - Emphasis on very-long-pulse liquid metal divertor / first-wall viability

Is a(nother) dedicated toroidal facility needed?

- Gaps to Compact Fusion Pilot Plant (CFPP) being identified and quantified in APS-DPP community planning process (CPP)
- Ability of existing, planned (near-term), and upgraded facilities to narrow gaps to CFPP is under discussion
- Is step from existing / planned facilities to Fusion Nuclear Science Facility (FNSF) / CFPP too large?
- A counter argument: Dedicated DD facility as pre-requisite to CFPP will cause significant delay, add to overall cost
 - But, hypothetically, if resources are available for fully nuclear CFPP, then parallel satellite DD facility for more rapid accompanying R&D possible?

Science and technology pre-requisites / **Gaps** for a steady-state Compact Fusion Pilot Plant (CFPP)

Abbreviated / simplified summary of Key Gaps (1-4):

- 1. Access / understand reliable sustainment of enhanced energy confinement
 - Steady-state CFPPs (STPP, ARC) assume $H_{98} \sim 1.5-2$ accessible and sustainable
- 2. Demonstrate efficient external non-inductive current-drive
 - Steady-state CFPPs need ≥ ~60-70% bootstrap, remainder from RF and/or NBI-CD
- 3. Demonstrate pilot-relevant power and particle exhaust handling
 - CFPP $P_{sep}B_T / R \sim 100-300 \text{ MW T/m} (q_{||} \sim 10-20 \text{GW/m}^2, \text{ depends on } \lambda_q \text{ scaling used})$
- 4. Operate w/ pilot-relevant first-wall, in-vessel components, maintenance
 - CFPP n-fluence, T retention requirements incompatible with carbon PFCs
 - Pilot-level core scenarios not yet achieved with metal walls tokamak or stellarator

Demonstrating integrated solution to Gaps 1-4 is major challenge

Science and technology pre-requisites / **Gaps** for a steady-state Compact Fusion Pilot Plant (CFPP)

Abbreviated / simplified summary of Key Gaps (5-7):

- 5. Avoid / mitigate transient events that might damage facility components
 - Prediction, demonstration of ITER ELM control can also be leveraged for CFPP
 - CFPP $W_{magnetic}$ and $W_{thermal}$ similar to ITER \rightarrow leverage ITER for CFPP
 - Runaway electrons incompatible with thin first-walls needed for efficient T breeding
 - Risk of runaway first-wall penetration, coolant channel damage tokamak show-stopper?
- 6. Develop high-current-density and high-field toroidal field magnets
 - CFPP requires winding pack current density J_{WP} ≥ 40MA/m² (2× ITER), B_{coil}=17-23T
- 7. Develop fusion-nuclear components for pilot-relevant performance
 - Need blankets with high thermal conversion efficiency and tritium breeding ratio
 - CFPP could / should first demonstrate net electric and T self-sufficiency
 - Follow-on with Fusion Nuclear Science (FNS) mission
 - High neutron fluence \geq 6 MWy/m² for materials and component testing

Example configuration developed (R=1m, A=2.4)

Key features:

- Study range of divertors
 - Fast-flow, slow-flow, vapor box, combinations
- High current density TF and inboard PF coils
- Double null divertor
- Vertical maintenance
- ~5T field on axis

Ongoing: Exploring R=1-2m, assess ability to scan range of A=2-2.6 in single device through reconfiguration of in-vessel components

Role of facilities in closing boundary gaps

Parameter / Device	NSTX-U I _P =2MA	NSTX-U I _P =1MA	DIII-D I _P =2MA	DIII-D I _P =1MA	JT-60SA (Inductive)	JT-60SA (Fully Non- Inductive)	Divertor Test Tokamak (Italy DTT)	SPARC	SHPD R=1.2m H ₉₈ =1.8	SHPD R=1.2m H ₉₈ =1.0	Low-A Pilot Plant	ARC
Aspect Ratio A	1.7	1.7	2.8	2.8	2.5	2.7	3.1	3.3	2.4	2.4	2.0	3.0
P _{sep} [MW]	12.7	12.7	16.7	16.7	27.3	24.7	32.0	30.0	33.3	33.3	100.0	95.3
Β _τ [T]	1	1	2.1	2.1	2.25	1.72	6	12	5.3	5.3	4	9.2
R ₀ [m]	0.94	0.94	1.6	1.6	2.96	2.97	2.15	1.65	1.2	1.2	3	3.3
I _P [MA]	2.0	1.0	2.0	1.0	5.5	2.3	6.0	7.5	4.3	2.1	12.5	7.8
a [m]	0.55	0.55	0.58	0.58	1.18	1.11	0.70	0.50	0.50	0.50	1.50	1.10
κ ₉₅	2.25	2.25	1.89	1.89	1.72	1.83	1.71	1.71	2.19	2.19	2.25	1.66
(Β _p) [T]	0.39	0.20	0.43	0.21	0.62	0.27	1.19	2.07	0.99	0.49	0.90	0.97
B _{p-mp} [T]	0.72	0.36	0.78	0.39	1.12	0.50	2.16	3.77	1.81	0.90	1.64	1.76
λ _{q-int} [mm]	3.41	7.79	3.11	7.09	2.00	5.30	0.92	0.47	1.14	2.61	1.27	1.18
q ₀ [GW / m ²]	1.3	1.2	2.2	1.9	2.2	1.3	10.8	29.5	17.3	15.1	15.4	31.1
$q_{\perp_0} [MW / m^2] (\theta_B = 2^{\circ})$	46	41	76	67	78	46	378	1029	604	529	537	1084
f _{BS}	0.48	0.90	0.52	0.92	0.32	0.76	0.19	0.28	0.70	0.83	0.73	0.63
(p) [MPa]	0.065	0.030	0.104	0.046	0.129	0.061	0.307	1.432	0.707	0.208	0.557	0.675
n _{GW} [10 ²⁰ m ⁻³]	2.10	1.05	1.89	0.95	1.26	0.59	3.90	9.55	5.47	2.72	1.77	2.05
Projected c _N for detachment	1.9%	3.9%	3.6%	7.2%	5.0%	8.9%	3.1%	1.7%	2.2%	4.3%	6.6%	12.2%

- NSTX-U: Liquid metal on high-Z solids ($q_1 \ge \sim 40$ MW/m²) at high f_{BS}
- Lower-I_P JT-60SA & DIII-D: Access CFPP-relevant detachment regimes
- Italian DTT and SPARC access CFPP-relevant q_{||}, pressure in pulsed operation
 R=1.2m SHPD, P_{heat} = 50MW: sustain integrated CFPP-level q_{||}, pressure, f_{BS}

Current LM options under investigation

 Capillary restrained LM (slow flow) surfaces designed for the inboard and outboard FW

 Vapor box divertor located at top incorporating slow flow LM surfaces – with no pumping

 Fast-flow divertor system defined at lower divertor where pumping will occur