Overview of Versatile Experiment Spherical Torus (VEST): Progress and Plans

Y.S. Hwang and VEST team

October 29, 2019 CARFRE and CATS Dept. of Nuclear Engineering, College of Engineering, Seoul National University

PRINCETON PLASMA PHYSICS

ISTW 2019, October 28-31 2019, ENEA, Frascati, Italy

Outline

- Introduction : Versatile Experiment Spherical Torus (VEST)
 - Device and machine status

• Start-up experiments

- Robust start-up method with trapped particle configuration
- Tearing modes during ramp-up phase

• Studies for Advanced Tokamak

- Research directions for high-beta and high-bootstrap STs
- Preparation for heating and current drive / diagnostic systems

• Internal Reconnection Event(IRE) for disruption study

- IREs for disruption understanding
- Rotation acceleration as well as ion heating during IRE
- Future research plans
- Summary

VEST device and Machine status

Introduction: VEST device and Machine status

VEST (Versatile Experiment Spherical Torus)

- The first and only ST device in Korea
 - Basic research on a compact, high-β ST (Spherical Torus)
 - Study on innovative start-up, non-inductive H&CD, high β, disruption, energetic particle, innovative divertor concept, etc

• Specifications

	Present	Future
Toroidal B Field	0.05 – 0.19 T	<0.3 T
Major Radius	0.45 m	0.4 m
Minor Radius	0.33 m	0.3 m
Aspect Ratio	>1.36	>1.33
Plasma Current	<170 kA	<300 kA
H & CD (ECH, NBI, LHFW)	ECH (7.9GHz, 3kW) ECH (2.45GHz, 15kW) NBI (15keV, 600kW) LHFW (500MHz, 10kW)	ECH (2.45GHz, 30kW) NBI (20keV, 1.2MW) LHFW (500MHz,200kW)

VEST device and Machine status **History of VEST Discharges**

- #2946: First plasma (Jan. 2013)
- #10508: Hydrogen glow discharge cleaning (Nov. 2014)
- #14945: Boronization with He GDC (Mar. 2016)
- #19351: Slower ramp-up and diverted plasma (May. 2018)
- #23907 : Higher TF discharge (Oct. 2019)

VEST device and Machine status 120kA Diverted Plasma (#19351)

VEST device and Machine status 170kA High TF discharge (#23907)

- Toroidal field at machine center (~0.4 m) ~ 0.18 (T)
- Maximum plasma current ~ 170 (kA)
- Pulse duration ~ 16 (ms)

0.6

Start-up Experiments

Start-up and Ramp-up Experiments

Start-up experiments Trapped Particle Configuration (TPC)

Y. An *et al., Nucl. Fusion* 57 016001 (2017)

• Efficient and robust tokamak start-up demonstrated with wider operation window at VEST

Pressure, ECH power and low loop voltage

- TPC: Mirror like magnetic field configuration
 - Enhanced particle confinement
 - Inherently stable decay index structure for Bv

Start-up experiments Trapped Particle Configuration (TPC)

J.W. Lee et al., Nucl. Fusion 57, 126033 (2017)

-80

-40

n

Time [ms]

40

Pure Ohmic (12393) TPC (12400) FNC (12403)

Robust and Reliable TPC Start-up Applied to KSTAR Successfully

2nd harmonic ECH resonance layer 80 - I [kA] Earlier plasma column formation 40 than field null configuration 1.5 V_{loop} [V] FNC (shot #12403) 2 ⁻ n_{el} [10¹⁹ m⁻²] 0.8 0.4 0.0 Ê 6 ⁻ D_ [a.u.] 300 PC (shot #12400) -0.5 P P [kW] 0.8 0.4 1.5 -1.5 0.0 D, Prefill [10⁻⁵ mbar] 2.4 -20 ms 30 ms 85 ms 1.5 2.5 1.6 **Reference field null Reference TPC** 8 - C [a.u.]

Feasibility study of TPC in KSTAR

- Even though low mirror ratio than ST, achieving efficient start-up with TPC
- 2^{nd} harmonic delay of 20 ms and ECH plasma density of $4x10^{18}$ m⁻²
- I_p formation with low E_t less than 0.2 V/m

120

80

Ramp-up Experiments Adjust current density profile for MHD suppression

#18452 #19160

• Hollow J_{ϕ} profile with MHD activity

- Fast ramp-up rate dI_P/dt
- High prefill gas pressure with low impurity

• Peaked J_{ϕ} profile without MHD activity

- Slower ramp=up rate dI_P/dt
- Low prefill gas pressure with high impurity

#18452, 0.305 s #19160, 0.305 s

 ψ_N

Poster P11

S.C. Kim/J.H. Yang

Ramp-up Experiments Adjust current density profile with fast ramp-up rate

- The same low prefill gas pressure
- Slow ramp-up rate of ~16MA/sec: TM stable

S.C. Kim

- Peaked current density profile
- High current achieved
- Fast ramp=up rate of ~32MA/sec: TM unstable
 - Hollow current profile
 - Low current achieved
- Classical feature of TM

Ramp-up Experiments

Adjust current density profile with prefill gas pressure control

J.H. Yang

12/38

- The same current ramp up rate: Unstable to TM
- Low prefill gas pressure: TM stable
 - Hollow current profile
 - High current achieved
- High prefill gas pressure: TM unstable
 - Monotonic current profile
 - Low current achieved
- Neoclassical feature of TM?

#18731, **0.306** s **#19157**, **0.306** s

Ramp-up Experiments Lower l_i startup by tearing mode suppression

Stable shots at unstable region

Time (s)

#19160 #18731

J.H. Yang

Ramp-up Experiments Inboard-Outboard Fluctuation Asymmetry

Mirnov coil signal

200

Preparation for Advanced Tokamak Studies

Studies for Advanced Tokamak

Preparation for Advanced Tokamak Studies Scopes of Advanced Tokamak Studies in VEST

Preparation for Advanced Tokamak Studies Simulations for the VEST Advanced Tokamak Scenario

- The integrated modeling system constructed.
- ASTRA+TGLF and NEO for heat & particle transport: Valid even in low aspect ratio tokamak

• The steady state solution of beam discharges showing that $T_{e0} \sim 0.8 \ keV$, $T_{i0} \sim 0.5 \ keV$ can be achieved by considering beam heating & fueling simultaneously.

18/38

Preparation for Advanced Tokamak Studies Diagnostics, Heating and Current Drive Systems in VEST

from SNU/KAPRA

High power central heating High Power NBI System : High Perveance (~15kV,~50A) Ion Source Installed on VEST

VEST NBI: Beam extraction experiments of NBI ion source

B.K. Jung

> 15keV-40A /0.6MW
 > 20keV-60A /1.2MW

High power central heating **NBI System Commissioning in VEST**

Poster P10 K.H. Lee

Commissioning up to 200 kW (10 kV/20 A, 10 msec)

Beam fraction E : E/2 : E/3 = 45 % : 7 % : 47 %

Neutralization efficiency: ~60%

21/38

High power central heating NBI Coupling Experiments in VEST

- Target plasma : #23834
- Plasma peak current : 75kA
- TF: 0.15T (= 12.5kA)
- Wall conditioning by GDC, Boronization
- NB power : 120kW

High power central heating NBI Coupling Experiments with 2msec Beam in VEST

Changes of plasma current by NBI

- Coupling at different time with different plasma current
- → Better coupling with Ip < 50kA: low beam energy?
- Current drop with Impurity influx by equilibrium change

High power central heating

NBI Coupling Experiments with 2msec vs 10msec Beam in VEST

High power central heating NBI Coupling Experiments with 2msec Beam in VEST

Profile Diagnostic Systems

Profile Diagnostic Systems

Profile diagnostics Thomson Scattering System

- **Measurement target**
 - n_e: > 5×10¹⁸ m⁻³
 - T_e: 10-500 eV
 - core plasma
- Laser: 0.65 J/pulse, 1064 nm
- Collection solid angle: ~50 msr
- Scattering length: ~5 mm
- Filter polychromator: 4 channels

Spectral Response of the polychromator

Nd:YAG laser

서강대한고 In collaboration with Polychromator Oscilloscope Y.G. Kim/D.Y. Kim Collection lens Beam dump

Profile diagnostics Thomson Scattering System Upgrade

In collaboration with

Young-Gi Kim, et al., Fusion Engineering and Design 143, 130-136 (2019) Doyeon Kim, et al., Fusion Engineering and Design 146 Part A, 1131-1134 (2019)

Profile diagnostics Visible optical spectroscopy

- > Measurement quantities : T_i , v_T , n_Z
- Passive emission spectroscopy
 - ✓ CIII 464.74 nm and OII 464.90 nm
 - \checkmark Line-integrated spectra \rightarrow spectral inversion
- > Specification

LCFS

Y.S. Kim

- \checkmark Detection range : 0.39 m < R < 0.71 m
- ✓ Spatial resolution : 20-22 mm
- ✓ Temporal resolution : 2 ms for 9ch, 0.2 ms for 1ch
- > CES/BES combined system is in preparation

×10⁻⁴

YooSung Kim et al., Fusion Engineering and Design 123, 975-978 (2017)

In collaboration with

0.75

0.75

465.2

0.8

0.8

IRE & Disruption

Internal Reconnection Event (IRE) for Disruption Study

IRE & Disruption

Poster P11

Internal Reconnection Event (IRE) after Sawtooth

Before the IRE, sawtooth-like activities are observed in Mirnov and OV signals even though q₀ is calculated to be higher than 1

- After the sawtooth activities, several IRE bursts are observed in *I_P*, Hα and magnetic signals
- IRE looks like...
 - Mode coupling between one internal mode (sawtooth) and the other internal mode (or external mode)
- \rightarrow need further study including mode identification!

Y.S. Kim/S.C. Kim

IRE & Disruption Rotation Acceleration as well as Ion Heating with IRE

Y.S. Kim

IRE & Disruption

Global Rotation Acceleration as well as Ion Heating with IRE

 \rightarrow different drive mechanism?

IRE & Disruption NTV Torque from the Fluctuating Magnetic Field

- In the presence of non-axis symmetric magnetic perturbation, neoclassical transport theory predict the NTV torque [1-3]
- MHD activity → strong magnetic perturbation
- Offset rotation is counter-*I_P* direction
- NTV torque can accelerate plasma rotation to offset velocity
- Simple 0D momentum balance equation

$$m_{i}n_{i}R\frac{d\Delta v_{\phi}}{dt} = S_{NTV} - \frac{m_{i}n_{i}R\Delta v_{\phi}}{\tau_{M}}$$

where $S_{NTV}[4] \approx 6.1n_{i}m_{i}v_{ti}^{2}\frac{\epsilon^{\frac{3}{2}}}{v_{i}R}(\delta B/B)^{2}(v_{\phi} - v_{\phi,NTV})$
 $|\delta B|[5] \approx \frac{1}{2}\left(\frac{b}{r}\right)^{m+1}|\delta B_{z}|_{wall}$
 $v_{\phi,NTV} = -40km/s$,

NTV torque by magnetic is reasonably agreement with experimental observation

[1] A.J. Cole, C. C. Hegna, and J. D. Callen, *Phys. Plasmas* 15 056102 (2008)
 [2] J.D. Callen, *Nucl. Fusion* 51 094026 (2011)
 [3] A.M. Garofalo et al., *Phys. Rev. Lett* 101 195005 (2008)

[4] J. Seol et al., Phys. Rev. Lett. 109 195003 (2012) [5] R. J. La Haye et al., Phys. Plasmas 7 3349 (2000)

- Similarity with experimental observation
 - Rotation in counter-I_p direction
 - Relation with magnetic fluctuation

IRE & Disruption

Two Different IREs with Opposite Rotational Kick

- Discharges with the same operating conditions
 - Shot#20955: Recovery
 - Shot#20958: Termination (disruptive)
- Before the IRE activity, discharge characteristics are almost same in both cases
- However, different behaviors after the IRE

Future Research Plans

Long-term Research Plans

Reactor-relevant Advance Tokamak research

- > AT scenario for high beta and steady-state operation
- Disruption mechanism and control
- Energetic particle transport
- > Innovative divertor to handle long-pulse high-performance operation

Summary

- Ohmic operation with I_P < 170 kA, κ < 2 and q_{95} < 5 achieved
 - MHD suppression and diverted configuration at higher TF field
- Efficient start-up with TPC (Trapped particle configuration) and MHD control
 - Robust TPC start-up applied to KSTAR successfully
 - TM during ramp-up suppressed by low prefill gas pressure (neoclassical)
 - Lower l_i startup by tearing mode suppression

• Preparation for the study of Advanced Tokamak with strong central heating

- Scenario for advanced tokamak study established
- High power (>600 kW) NBI coupling experiments on-going
- Various diagnostics are under preparation
- MHD activity study during ramp-up/ramp-down
 - IRE (Internal reconnection event) study to understand disruption
 - Rotation acceleration as well as ion heating during IRE
- Various long-term research plans will be pursued

Thank you for your attention !

VEST device and Machine status Diagnostic Systems

Diagnostic Method		Purpose	Remarks
Magnetic Diagnostics	Rogowski Coil	Plasma current & eddy current	in-vessel coils
	Pick-up Coil & Flux Loop	B _z , B _r & Loop voltage, flux	65 pick-up coils 11 loops
	Magnetic Probe Array	B _z , B _{r,} MHD	Movable array
Probes	Electrostatic Probe	Radial profile of T_e , n_e	Triple Probes
Optical Diagnostics	Fast CCD camera	Visible Image	20kHz
	H _a monitoring	Η _α	H _a filter+ Photodiode
	Impurity monitoring	O & C lines	Spectrometer
	Thomson Scattering	T _e , n _e profile	Nd:YAG laser, 1kHz
	Imaging Fabry-Pérot Interferometer	edge T _i	Multi-channel with fiber array
	Visible Optical Spectroscopy	Rotation and T_i	CES/BES with DNB
	Interferometry	Line averaged n _e	94GHz, multi-channel
	Soft X-ray Array	MHD	2-D

VEST device and Machine status Magnetic diagnostics

* TF coils are used as a diamagnetic flux sensor for stored energy

J.H. Yang

Quick disconnect

40/38

Start-up Experiment Closed Flux Surface Formation for Successful Start-up in TPC

Start-up Experiment

Solenoid-free Start-up from Outboard with Outer Poloidal Field Coils

Current density profile control Core Heating and Current Drive with LHFW

• For high density plasma in fusion reactor

- Slow wave branch of LHW
 - \rightarrow Absorbed at the edge region
- Fast wave branch of LHW
 - \rightarrow Possible absorption at the core region
- Proof of principle for current drive scheme by fast wave branch of LHW in VEST
 S.H. Kim (KAERI)

JongGab Jo et al., Physics of Plasmas 25, 082511 (2018)

Current density profile control In collaboration with KAERI and Kwangwoon Univ. Feasibility study of LH Fast Wave (500MHz, 10kW)

$$2\omega_{lh} < \omega \ll \omega_{ce}$$

*n*_∥-upshift via wave scattering measured during propagation in edge region

Modified accessibility condition of LHFW by n_{\parallel} -upshift via microwave scattering

KAERI