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ST40 — High field ST energy
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> R,=0.4-0.6m, R/a=1.6-1.8 k=2.5 central. LGN < oorecsion
(k<1.5 at present) =

> Solenoid-free or solenoid-assisted m
start-up using merging-compression | E’E

TF coils STl | B fg

> >4MW of auxiliary heating (NBI / SNeal] | IR f/ /- dg
ECRH) Divertor — o ¢” _, /%_[

coils
> Pulse flattop length 1 -2 s, 1s at full
TF (pulse duration ~200 ms now)
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Diagnostics available in Phase0, 2018
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> Fast monochrome camera
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ST40 Summer 2019 energy
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Diagnostic Neutral Beam

Injector (DNBI)
0.15 MW 50 keV, 1s

NIR Retro-reflector

> Hard X-ray & Gamma Detectors

UV/Visible Doppler (Avantes)

(Princeton) Spectrometers
_ Fast Visible & H-alpha Cameras

Soft X-ray (Canberra)
Spectrometer

Infrared Camera

Neutral Particle Analyser (NPA)

Foil Filtered Soft X-ray Linear ——

Arrays/Cameras Vibration Isolated Diagnostic

Tower provides support for:
» SMM Interferometer

» NIR Interferometer

» ECE Radiometer

Panoramic (Ocean)
Spectrometer

Va1t

r

Line Emission Monitors
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lon temperature measurements energy
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* lon Doppler broadening: visible/near-UV spectrometer
* 50 chords: vertical/horizontal and radial/tangential alighments to rule out effect of rotation

* Experiments w/ various lines: Clll (464.74nm), CV (227.09nm), BIV (282.16nm). Mostly CV used in
2018. CVI (529.05nm), used in 2019

* DNBI50kV 150 kW 1 sec installed, under commissioning

* Cristal spectrometer installed

T vessel

Iy(m)
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X-ray diagnostics, 2019 energy
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* Temporal X-ray spectroscopy
e Si(Li) detector
* Up to 200k photons per second

* SXR diode arrays

* 3 heads | | | | | | "
* 4 filters for different X-ray energies - - \
e 20 channels per photo diode | 1 1 1 i 3
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Density measurements energy

a faster way to fusion

* NIR interferometer: line averaged densities 1020 m-3

* 325 GHz interferometer

* ECE radiometer: n, regularly above 102° m=because 3™ harmonic signal (100GHz) is

cut off

Midplane cross-section
of plasma cut-offs and
resonances for majority
of ST40 first operations:
n.=10%°m=3, |- = 50 kA
(Bx=0.6T)
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Infra red camera energy
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ST40 #6147 t=0:00:00:00

* |nfra red camera
shows load on the
central post
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Phase0, 2018 energy

a faster way to fusion

Goals of PhaseO:

Scenario development, to find best target for solenoid and beam heating scenarios
Check/confirm m/c scaling (can we get 100M from m/c?)

Check/confirm performance improvement with TF

Check/confirm performance improvement with Li

BN e

Main findings:
* |t was possible, qualitively, to confirm both reconnection and confinement scalings.
- Flat-top ion temperature increases with TF.
- Reconnection ion temperature does not depend on TF but strongly depends on MC
current and plasma current (e.g. on reconnection field).
* No apparent increase of T, with Li conditioning, however up to 30% increase in plasma
current was observed.

© 2019 Tokamak Energy
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Main results from Phase0, 2018 energy

ster way to fusion

Main achievements of PhaseO:

* Maximum plasma current on ST40 is 400kA, shot 5347. This is higher than ever
achieved on MAST w/o use of solenoid, due to higher TF and reconnection field.

 Maximum ion temperature from merging-compression is 2114 +340eV, measured
using BIV line, shot 5178 (50kA in TF, 0.34 T). Overall there are 13 “trusted”, e.g.
no MHD etc, shots with temperature over 1keV, where we had full set of data.

Highest T, on MAST was 1.2keV.

* Highest TF >1T (and the record for STs) at R, was achieved in several pulses.

10
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Test of confinement scalings energy
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List of most interesting pulses, TF scan energy

a faster way to fusion
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Confinement studies, Phase0 experiment SNery
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* Atthe flat-top, measured T, and W,, ..., increase with B,, in agreement with START and Globus-M data
and also with Artsimovich formula.

* However, at B, ~ 1T we observe sharp increase in T, and W,,,, which may suggest transition to better
confinement at higher toroidal field.

0.8 | A W___end of flat-top A
. oT eqd of flat-top // 12 | A WEFIT mid of flat-top A
o T mid of flat-top 10f A W spring 2019 A y
S 0.6 ® -START L A WE:: September 2019 /
: 7?«’ fLOBUS_hﬁf sta0 20| ~,
S - Artsimovich for o /
0.4} TG I %ﬁé
2 O -ST40 hy 2{ ~
= Al Y N
= 0.2 -
L 2 i
09l 2019 results confirm 0 ™5™ 58" 10 12 14
: : : : confinement improvement B, T

t at higher TF (more later)
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Comparison of W,,. and W, ; with T,

 Some dependence on plasma current and gas (density)
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- & W___ mid of flat-top

A Wdi.:
A W___, end of flat-top

A

Comparison of Weg,r and
W,;, with neoAlcator scaling
(more later)
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Confinement studies, comparison with scalings

energy

tokamak
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* ASTRA modelling, #4669: lons neoclassical, electrons fit to get different Hoh=TauE/TauE_NeoAlcator

blue —n_= 4 x 10 Hoh=3; yellow —n_,= 7 x 10¥® Hoh=2; g
red crosses — T, from Doppler;

T, e\
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* Closest fit: yellow, n, = 7 x 10%;
* Confinement above NeoAlcator ohmic scaling?

reen—n,= 7 x 10 Hoh=1.4. red line — EFIT,

Electron central temperature
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* In latest 200kA 200ms shots confinement was estimated up to ~ 60ms, which is about 7-10 times
higher than NeoAlcator scaling prediction
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Improvement in confinement at higher Toroidal Field tokamak

energy

aster way to fusion

Observed sharp increase in T, and W,, ..., at B, ~ 1T may be connected with the predicted
(in GS2 simulations) reduction in transport at higher toroidal field in an ST:

35 T

R ¢ START
§ % Eﬁh” 1 - At low magnetic field the mixing length
L | 2 I i e o _ diffusivity is dominated by electromagnetic
b tearing modes; these are stabilised at higher B,,
z B ' diffusivity then being dominated by
% 3 sf % electrostatic twisting modes.
o s LSty peaked_ - no beta or shape dependence at high field
& :;10— density profile | Threshold toroidal field i o | | ¢
gz is unfavourable resho oro.| al field is quite low, close to
o0 :‘53 B - one observed in ST40, ~1-1.5T
é E 0 e =3

b 1 2 3 4 5 6 7 8 9 10

Magnetic Field B (T)
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Well-defined plasma edge teoﬂkg’gﬁk
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* Spontaneous transition to sharp edge plasma

* ReductioninH,
W up Increase up to x2

© 2019 Tokamak Energy
([ J



© 2019 Tokamak Energy

Confinement studies, modelling tokamak

energy

ster way to fusion

Transport simulations with ASTRA, NUBEAM and TSC codes have been performed to
model ST40 parameters and to support the physics basis of the compact high field ST
path to Fusion.

We show that high confinement regimes with neoclassical transport can be expected
even when plasma is only ohmically heated.

In an auxiliary heating regime, we find a hot ion mode with T, in the 10keV range to be
achievable with as low as 1MW of absorbed power.

Limitations of applicability of confinement scalings for prediction of performance of
ST40 and beyond.

However, we show that if the performance achieved on other spherical tokamaks can
be extended to ST40 conditions, up to 1 MW of Fusion power can be expected in DT

operations.

19



Confinement studies, ASTRA - NUBEAM simulations tokamak

energy

aster way to fusion

ST40 can check applicability of neoclassical theory in a high field ST

Can Qy,, ~ 1 be achieved in a high field compact ST?

Can hot ion mode be achieved in a high field ST?

0.4 x
\ TElnn neoclassic 100
W 0.3 \ - I~
z » s
E ' © 10/ £ 10,
'E' 0.2 = - E"
5 w e 5 S
= 0.1 neoclassical i B “I:_".
s ITERSS.P bk » NeoAlc;OH
“Pu -"'"H- . v . v v ; ﬂ.'l T T T T T L 1_
0 2 4 6 B 10 12 14 e 2 4 6 & 10 12 y 10
n, [10®m] n, [10%m] n, [10°m"]
7= vs line averaged density DT neutron yield vs line Central T;, T, vs line averaged
in OH regime averaged density with IMW density with LMW absorbed power
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Edge simulations SNeIOY
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Edge simulations

Map to divertor with EFIT

Z(m)

-

ST40 equilibrium

1 | L 1 1 1

02 04 06 08 1 12 14
R (m)

Evaluate parallel heat flux in ST40
using HESEL

Determine A\, from turbulence
simulations

Aq,HESEL = 1.9 mm for PSOL =22
MW

Aq.Eich = 1.7 mm for similar
conditions

Range of parameters scanned,
)\q,HESEL S [1 .8;2.7] mm

'[A. H. Nielsen et. al. PPCF 59 (2017) 025012]

tokamak
energy
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Transient SND

Globus-M experiments:

~ | -1.40 06
AqIVIP lp BT

Eich 2011,Scaling for
Conventional tokamaks:

~1 -1.1p 0.42
Ay ™1,

Eich 2013, Scaling for
Spherical tokamaks:

~f -1
Aq Ip : 22



Edge simulations, Power Profiles tokamak

energy
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Parallel heat flux at LCFS Parallel heat flux at divertor

300 35

250 30

"T‘_' 200 N

E |

= g 20
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: 150 % s

Eloo é 10
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50 5

0 0
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R/ [m] R/ [m]

R
Qdfv — LCFSQH,LCFS’ fx — fx,J_/Sin(B)
Rdfvfx
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» Large fy — tolerable heat loads at divertor
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Fast particles studies tokamak

energy

a faster way to fusion

Studies of fast ions and alpha particle transport, heating and current drive, torque
deposition and momentum transport have been performed using ASCOT, NUBEAM,
Monte Carlo code NFREYA and the Fokker - Planck code NFIFPC.

Different NBI energies and launch geometries have been studied and optimized.

The confinement of thermal alphas in ST40 3T/2MA scenario is studied with full
orbit following (which is necessary because of the large alpha particle gyro radius).

The first orbit losses are seen to be almost 60% even in the high-performance
scenario illustrating that the alpha confinement in a small device is very difficult
even at the highest available fields. However, experiments on ST40 will provide
useful information for verification of such simulations.

25



Fast particles studies, a-particles tokamak

Alpha containment fraction and peak wall loading in ST Pilot plant, Z
solid - full gyro model, dash, open - guiding centre model
4 075 ettty
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* Importance of full-orbit \ =
simulations for ST reactor —

0.15 0.65

a-particle slowing down by banana
orbits. The co—legs of the bananas try
to move toward the right stagnation
point and the counter-legs move
away from the left stagnation point.
Monte Carlo (M-C) code NFREYA.

© 2019 Tokamak Energy

! 1 1 i L 1 1
02 03 04 05 06 07 08 09

Tritium thermalisation and wall
losses in ST40. Marker colour
indicates the time it took to
reach the final position (wall
hit or thermalisation). Roughly
50% of the Tritons are first
orbit losses. ASCOT.

energy

a faster way to fusion
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R(m)
Fast-thermal TD reaction rate from
a DT reaction between 1.01 MeV
Tritium slowing down against
thermal Deuterium for 1.2T/2MA,
1.1x10°m=3,1MW NBI. This is the
main channel producing 14 MeV
neutrons. ASCOT.
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tokamak

Better use of Magnetic Field: reconnection heating energy

Magnetic confinement is based on containment of hot
plasma and insolation of it from the wall of the vacuum
vessel, by the externally applied magnetic field.

It is possible to transfer magnetic energy directly into

the plasma thermal energy with a very high efficiency
(up to 90%), thus using magnetic field not only for the
containment, but also for the plasma heating.

This can be achieved using magnetic reconnections
during merging-compression formation of the tokamak
plasma, as used on START and MAST

a faster way to fusion

MC
coils

28
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Better use of Magnetic Field: reconnection heating energy

a faster way to fusion

» Reconnection theory has been developed R
: . . . . . . . . 1000 - © T::Bk\-’ -T53
in astrophysics in 60-70th S i T
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Reconnection heating — injection of fast ions teonkeargfk

a faster way to fusion

* To model merging-compression process codes NFREYA, TSC and Torus Il have been used.

* NFREYA — Monte Carlo simulations are based on the assumption that the ions formed during the reconnection reach the
poloidal Alfven energy and are mainly running in co-direction

* Assuming reconnection heating power of 20 MW with the deposition D(r) and a heating time of 3 ms, temperature of T, ~1
keV is obtained in rough agreement with MAST & ST40 results

t=4.0ms
2.0ms

250 12.0 ms

$hot6700: time = 5.00000ms
™7 7

| >t2 i

200 |
2 150 |
1.0 . =100 '
<4 hhmax 4 B~ \
) 1118 58
i Ty ] pev) Il 035 r/ry, 0.95
A 08 5345
| | < 250 11.0-13.0ms
) P78 200
- T
0 Y/ Wax ~"s0
g . B 5 O | 1 0
¢ Orbits of the ions Deposition profile of ~ Time evolution of T, due to S
- produced by reconnected ions D(r)  reconnection heating, TSC Time evolution of T,; on
o

reconnection MAST and of T, on ST40 30
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2019, first results energy

aster way to fusion

Highlights:
* Solenoid (0.3 Vsec) fully operational. Pulse duration increased from tens of ms to
200 ms with plasma current at flat-top > 200kA.

* TFup to 1.5T is now routine

* Good confinement, up to 5x Neo-Alcator (at lower densities, ~ 2x10°m3)
* Highest 3 (EFIT) above 4, and this is in OH! W, doubled, now 4 — 12 kJ.
* First measurements of T, (SXR spectrometer), keV-range

* EFIT operational, PFIT for position control.

* NPA operational.

 DNBI installed, RFX NBI (30kV, 1MW, 120 ms) under commissioning

32
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2019, first results energy
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2019, first results

Typical Ohmic discharge initiated
compression

Pulse duration extended using pre-programmed control
Vertically unstable operating region entered. Closed loop

plasma control system to be implemented in Programme 2

using merging-
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T, in hot spot after reconnection increases with TF, Ti does not
depend on TF (as on MAST)
Two possible explanations of T, evolution:
- slowing down of electrons accelerated during reconnection
- equipartition with ions heated during reconnection
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Arguments:
* Only solution for >20T on conductor
* Reduction in cryo power — needed for compact reactors
e Can tolerate some heating (while LTS will quench!)
* Good mechanical properties
* Good performance under neutrons

e Supply chain improving all the time (i.e. SuperOx)
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Coil winding & assembly

77 K test facilities

Instrumentation & magnet integration capability
4 kA, 12-50 K conduction-cooled cryogenic test rig
One QA coil made and tested per week
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Scale up plan for fusion:

tokamak
HTS development at TE Ltd SNEIQyY
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R Slad 77N\
ade

Modular, robust & scalable high field HTS magnets 3 Sept 2019 ) EUCAS 2019
Simple assembly and disassembly (no soldering) Dochartroom, 163 NG o H
24.4 T achieved conduction cooled at 21 K " ' |

Survives repeated fast (LTS-like) quenches

High voltage insulation is not required

Defect and damage tolerant

No need for long tape lengths (~*20 m is OK)
Saturated mode: no screening error fields or drift ?

Our QA coil technology is ready for your and also for =
non-fusion application !

QA FrankenCoil Demo3
using novel partial insulation 12T@21K 165T@ 23K 244T @ 21K

No twisting / transposition (enables > 300 A/mm?)
Ex-situ cooling & structural support — simple large coil manufacture
Neutron-resistant HV insulation not required 40

Retain benefits of NI quench protection with fast ramp capability
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a faster way to fusion

« Demonstration of burning plasma in a compact
high-field ST is the current challenge for Fusion

 The ST path to commercial application of Fusion
can start from Compact ST with R as low as 0.4 m

e ST40 is the first high field Spherical Tokamak

41
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o complet®’

Programme 1

Future Plans

Programme 2

Programme 3

Programme 4

Completed October In progress, ending
2019 early 2020 Starting late 2020 2022- ...
System & Upgraded yacuum Liquid metal
diagnostic vessel and in-vessel :
divertor upgrade

commissioning

Ohmic plasmas

components

Neutral beam heated plasmas

RF heated plasmas

Solenoid

free start-up: merging compression

; Solenoid free start-up: EBW/ECRH

b

Confinement and transport studies

b

SOL and divertor characterisation

1

tokamak

energy
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Together we can make Fusion Faster! energy

ster way to fusion

Our principles:
* Collaboration in development of Fusion Science and Technologies
e Use of multiple compact devices and demonstrators to validate modelling and
progress at a faster pace and lower financial risk

e Strong focus on industrial ‘deliverability’ and cost of the commercial device

* QOur approach has common ground with mainstream Tokamak Fusion (e.g. ITER,
DEMO, STEP).

We rely on the same physics behind the magnetic fusion concept ... but we have
a faster way to get to a commercially viable device.

43
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