

Thermal energy continement at the Globus-M spherical tokamak and first results from the Globus-M2 experiments

S.Yu. Tolstyakov, E.A. Tukhmeneva, I.V. Miroshnikov, N.A. Khromov, F.V. <u>G.S. Kurskiev</u>, N.V. Sakharov, N.N. Bakharev, V.K. Gusev, Yu.V. Petrov, E.O. Kiselev, V.B. Minaev, M.I. Patrov, P.B. Shchegolev, A.Yu. Telnova, Chernyshev, V.A. Tokarev, V.I. Varfolomeev, N.S. Zhiltsov

and Globus-M2 team.

Outline

Thermal energy confinement at the Globus-M

- Energy confinement in OH regime
- NBI heating efficiency at the Globus-M
- Thermal energy confinement dependence on B_T and I_p
- The role of collisionality on electron heat transport

First results from the Globus-M2 experiments

- B_T and I_p impact on energy confinement
- Heat transport analysis

- *I_p* ≤ 0.3 MA B₇ ≤ 0.5 T
- *R* = 0.35 m
- a = 0.21 m
- R/a = 1.5 1.6
- k = 1.8-2.2
- $< n_e > \le 1 \cdot 10^{20} m^{-3}$ $T_e \le 1.5 keV$
- $T_i \le 0.9 \ keV$
- $P_{NBI} \leq 1 \text{ MW}$

H-mode

H-mode access in pure ohmic heating and in NBI regimes

OH H-mode

Figure 7. Time evolution of plasma parameters in OH discharge with H-mode. Shot #18083.

Figure 10. *L*–*H* transition in the NBI heated Globus-M shot #19518.

Nucl. Fusion 49 (2009) 104021

Energy confinement in Ohmic heating regime $I_p=0.2 \text{ MA, B}_T=0.4 \text{ T}$

- \succ T_e decrease
- steep ∇n_e formation at the edge

- *increasing density from* 15 downto 2 m²s⁻¹ Electron heat diffusivity decreases with
- Ion heat diffusivity is neoclassical, rises

on plasma current

- $\tau_{\rm E}$ ~ $B_{\rm T}$ for moderate density 4 6 10¹⁹ m⁻³
- electron heat transport improves $-\chi_e$ decreases in the plasma core

Analysis of microinstabilities in OH regime

 $R/L_{Te} \approx 4.5$ that is close to critical value for TEM ($R/L_{Te}^{crit}(TEM) \approx 6$)

 $OH\,H$ -mode $n_e\!\!>\!\!2.5\!\cdot\!10^{19}~\mathrm{m}^{-\!3}\, au_\mathrm{E}pprox0,7\cdot au_\mathrm{E}^{\,\mathrm{H} ext{-mode}}$

- $R/L_{Te} \approx 4$ that is close to critical value for ETG ($R/L_{Te}^{crit}(ETG) \approx 4$)
- Ion heat transport is neoclassical

The effect of \mathbf{B}_{T} on $\boldsymbol{\tau}_{\mathrm{E}}$ in the NBI H-mode

- W and τ_E rises with B $_T$
- Electron heat diffusivity decreases
- Ion heat transfer is consistent with neoclassical theory $\chi_i = \chi_i^{neo}$

nstitute

Dimensionless analysis

17

18

Dimensionless analysis

 $(q_{eng} \sim B_T/I_p; \ v^* \ \sim n_e/T^2; \ \rho^* \ \sim T^{0.5}/B_T; \ \beta_T \ \sim W/B_T^2;)$

- Regression shows strong dependence of the energy confinement time on the plasma collisionality
- fixed $\rho *, \beta_T, q$ The result is confirmed by the dedicated scan with

Dimensionless analysis

20th International Spherical Torus Workshop

20

October 28-31, 2019

Improvement of the electron heat transport is observed in the plasma core.

> 0 ⇔†

0.4

0.5

0.6

0.7

0.8

r/a

Ion heat transport in the NBI H-mode

- Ion heat transport study was carried out using deuterium NBI E_b=26 keV P=0.65 MW
- $< n_e > = (2.5 3.5) \cdot 10^{19} \text{m}^{-3}$
- Fixed $q (\sim B_T/I_P)$:
- Bt=0.4 T, Ip=180 kA
- Bt=0.5 T, Ip=225 kA
- Ion heating by NBI is quite pronounced
- I_p and B_T rise lead to W and T_i increse

20th International Spherical Torus Workshop October 28-31, 2019

Ion heat transport in the NBI H-mode

- l T_i calculated using $\chi_i = \chi_i^{neo}$ assumption is consistent with CXRS measurements
- W^{MHD} is consistent with calculated W^{thermal}

l for $I_p = 0.1 - 0.25$ MA, $B_T = 0.4 - 0.5$ T no evidence of anomalous ion heat transport was observed in NBI H-mode

MTM simulation: Kiselev E.O. et al 2019 to be published

0.6

Linear gyrokinetic results for NBI H-mode plasmas

lotte

Institute

25

Summary I: Globus-M results

- R/a=1.6 1.7 Toroidal magnetic field plays a crucial role in the thermal insulation efficiency in ST with
- "Engineering" $\tau_{\rm E}$ scaling for the Globus-M NBI H-mode:

$$\tau_E^{GLB} = 6.08 I_p^{0.48 \pm 0.21} B_T^{1.28 \pm 0.12} P_{abs}^{-0.54 \pm 0.26} n_e^{0.77 \pm 0.04}, ms$$

- Both electron and ion heat transport decreases with collisionality yielding $B_T \tau_E \sim v^{*-0.46\pm0.05}$
- Ion heat diffusivity doesn't contradict with neoclassical theory predictions
- plasma. Microtearing mode is likely the cause of electron heat transport in Globus-M NBI H-mode

Globus-M2

- R [cm]/a [cm]= 36/24 = 1.5
- $B_{\rm T} = 1$ T, $I_{\rm p} = 500$ kA
- including 2xNBI, ICRH, LHCD, plasma gun Diverse diagnostics, heating and CD systems,

Extreme P_{heat}/V = 6 MW/m³

12-25	5-10	$\tau_{\rm E,}{ m ms}$
2	1	<n<sub>e>[max], 10²⁰m⁻³</n<sub>
1(2)	0.5	<t<sub>e>, keV</t<sub>
1.5(3)	0.4	<ti>, keV</ti>
500	100	LHCD, kW
500	120	ICRH, kW
1 MW 18-40 keV + 1 MW 40-50 keV	1 MW 18-30 keV	NBI
1 / 500	0.4 / 250	Btor/Ip, T/kA
Globus-M	Globus-M	Parameter

First plasma: April 23rd 2018 20th International Spherical Torus Workshop

October 28-31, 2019

$$B_T = 0.7 \text{ T} I_p = 0.25 - 0.3 \text{ MA}$$

nstitute

Beam absorbed power – 0.4 MW

Stable transition to H-mode under NBI

 $\tau_E = 8$ ms corresponds to $H^{IPB98(y,2)} = 1.2-1.3$

Analysis of the energy confinement was carried out for the quasi-steady discharge stage $dW/dt \approx 0$

Total stored energy enhancement

Plasma total stored energy rises more then 3 times!!!

Fast ion contribution to measured total stored energy $W_{\perp}^{fast}/W \approx 0.1$ according to NUBEAM and "3D fast ion tracking" modelling

 $au_{E}^{\text{IPB98(y,2)}} \sim I_{p}^{0.93} B_{T}^{0.15}$

 $\tau_E^{Globus-M} \sim I_p^{0.48} B_T^{1.28}$

 τ_E enchantment for scalings:

- I_p increased 1.25 times (from 0.2 MA to 0.25 MA)
- B_T increased 1.75 times (from 0.4 T to 0.7 T)
- τ_E raised 1.9 times (from 4 to 7.5 ms)

October 28-31, 2019

 $au_{E}^{\text{IPB98(y,2)}} \sim I_{p}^{0.93} B_{T}^{0.15}$

 $\tau_E^{Globus-M} \sim I_p^{0.48} B_T^{1.28}$

 τ_E enchantment for scalings:

IPB98(y, 2)

1.3

- I_p increased 1.25 times (from 0.2 MA to 0.25 MA)
- B_T increased 1.75 times (from 0.4 T to 0.7 T)
- τ_E raised 1.9 times (from 4 to 7.5 ms)
- 20th International Spherical Torus Workshop October 28-31, 2019

 $au_{E}^{\text{IPB98(y,2)}} \sim I_{n}^{0.93} B_{r}^{0.15}$

 $\tau_E^{Globus-M} \sim I_p^{0.48} B_T^{1.28}$

 τ_E enchantment for scalings:

IPB98(y, 2)

Globus-M

1.3

2.1

- I_p increased 1.25 times (from 0.2 MA to 0.25 MA)
- B_T increased 1.75 times (from 0.4 T to 0.7 T)
- τ_E raised 1.9 times (from 4 to 7.5 ms)

20th International Spherical Torus Workshop

October 28-31, 2019

 $au_{E}^{\text{IPB98(y,2)}} \sim I_{p}^{0.93} B_{T}^{0.15}$

 $\overline{\tau_E^G} lobus - M \sim I_p^{0.48} B_T^{1.28}$

 τ_E enchantment for scalings:

- I_p increased by 1.5 times (from 0.2 MA to 0.3 MA)
- B_T increased by 1.75 times (from 0.4 T to 0.7 T)
- τ_E raised by 2.4 times (from 4.2 to 10 ms)

 $au_{E}^{\text{IPB98(y,2)}} \sim I_{p}^{0.93} B_{T}^{0.15}$

 $\tau_E^{Globus-M} \sim I_p^{0.48} B_T^{1.28}$

 τ_E enchantment for scalings:

IPB98(y, 2)

1.4

- I_p increased by 1.5 times (from 0.2 MA to 0.3 MA)
- B_T increased by 1.75 times (from 0.4 T to 0.7 T)
- τ_E raised by 2.4 times (from 4.2 to 10 ms)

n 0.2 MA to 0.3 MA)

20th International Spherical Torus Workshop October 28-31, 2019

 $au_{E}^{\text{IPB98(y,2)}} \sim I_{n}^{0.93} B_{T}^{0.15}$

 $\overline{\tau_E^G} lobus - M \sim I_p^{0.48} B_T^{1.28}$

 τ_E enchantment for scalings:

IPB98(y, 2)

Globus-M

1.4

2.4

- I_p increased by 1.5 times (from 0.2 MA to 0.3 MA)
- B_T increased by 1.75 times (from 0.4 T to 0.7 T)
- τ_E raised by 2.4 times (from 4.2 to 10 ms)

Plasma performance in high density discharge

20th International Spherical Torus Workshop October 28-31, 2019

> ω 6

Plasma performance in high density discharge

- growth of T_{e} , T_{i} , W^{MHD} and τ_{E}
- *W^{MHD}* confirmed by kinetic measurements
- loop voltage decrease
- pulse duration increase

20th International Spherical Torus Workshop October 28-31, 2019

- ASTRA modelling:
- equation for ion temperature assuming neoclassical ion heat diffusivity
- fixed electron temperature and density profiles from Thomson scattering
- significant increase in T_i is consistent with NPA and diamagnetic measurements

ST scaling works !

- Energy confinement enhancement is in line with ST scaling predictions
- An improvement in the thermal insulation of electrons and ions is observed
- Neoclassical effects plays a major role in Globus-M/M2 ion heat transport

 $H_{IPB98(y,2)} = \tau_E^{exp} / \tau_E^{IPB98(y,2)}: 0.8 \rightarrow 1.3$