CHI Research on PEGASUS-III

R. Raman¹, J. Reusch², M.W. Bongard², F. Ebrahimi³, R. Fonck², J.A. Goetz², T.R. Jarboe¹, B.A. Nelson¹, M. Ono³, G. R. Winz²

¹University of Washington, Seattle, WA, USA

²University of Wisconsin, Madison, WI, USA

³Princeton Plasma Physics Laboratory, Princeton, NJ, USA

This work is supported by US DOE contract numbers DE-SC0019415 and DE-AC02-09CH11466

20th International Spherical Torus Workshop October 28-31, 2019 ENEA – Via Enrico Fermi 45, Frascati Bruno Brunelli Hall

Solenoid-free Plasma Start-up Capability Would Make an ST Reactor More Attractive as a Power Plant

- Compared to standard aspect ratio tokamak, the ST configuration provides access to higher levels of bootstrap current drive
 - Low recirculating power & high availability important metrics for power plant
 - Small (or no) solenoid would allow the ST to operate at higher TF
- "The singular advantage of solenoid-free start-up is that it allows more metal to be added to the Toroidal Field (TF) coil inboard nose region to allow the TF to support a higher peak field and higher field on axis – improving performance" – Tom Brown (PPPL Reactor Systems Designer)
- Increased space in central core would permit installation of systems that are essential for a low recirculation power producing reactor
 - Inboard high velocity (several km/s with no curved guide tube) pellet injection for density & pressure profile control
 - Inboard RF launchers (to eliminate NBI heating and CD)
 - Reduced OH-TF interaction forces enabling stronger TF

T-CHI Start-up & configuration on HIT-II & NSTX

(Insulators are a part of the vessel vacuum break)

CHI discharge images

CHI Research Plan on PEGASUS-III

- Develop and test a double biased electrode configuration
- Initiate Transient CHI discharge and optimize it to understand requirements for implementing it on NSTX-U
 - Generate currents up to the external PF coil limits (~300kA)
 - Heat CHI plasma using ECH
- Drive a T-CHI discharge using LHI to study synergisms with LHI
- Examine potential of Steady-State (driven) CHI

Develop and test a double biased electrode configuration

- HIT-II and NSTX used toroidal ring insulators that were part of the vessel vacuum structure
 - Difficult for reactor implementation
- QUEST is testing a single biased electrode configuration
- The externally driven injector current path is much clearly defined in a double biased configuration
 - Much more difficult for spurious arcs to occur
 - Much better suited for long-pulse driven CHI studies

QUEST (Japan) uses a single biased electrode configuration

See K. Kuroda (poster) for details & CHI plan on QUEST

PEGASUS-III: Divertor Coils / CHI Electrode locations to be finalized (soon) after finalizing Toroidal Field Coil design

Scaling relations for Transient CHI based on experimental results from HIT-II, NSTX, and from TSC simulations

- Capacity to generate plasma current I_p is proportional to ψ_{inj}
- Toroidal current* generation is proportional to the ratio of toroidal flux ψ_{tor} to injector flux ψ_{ini}
- Injector current* I_{inj} must meet bubble-burst condition for plasma to expand from injector to main vessel

^{*} T.R. Jarboe, Fusion Tech. 15, 7 (1989)

Studies on PEGASUS-III will optimize CHI by improved quantification of scaling parameters in support of future studies on NSTX-U

$$I_{\rm inj} \ge \frac{2\psi_{\rm inj}^2}{\mu_0^2 d^2 I_{\rm TF}}$$

Parameter 'd' the injector flux footprint width strongly determines required injector current and needs improved characterization

$$I_{\rm p} = \frac{2\psi_{\rm pol}}{\mu_0 R_{\rm maj} l_i} \quad \psi_{\rm pol} \le \psi_{\rm inj}$$

The attained plasma current is depends on the plasma internal inductance, which is controlled by the edge current carrying open flux during CHI discharge initiation

- External flux shaping coils will control the parameter 'd' and the width of the edge current channel
- Close positioning of the divertor coils to the CHI electrodes would permit these important parameters to be studied on PEGASUS-III

Initial Studies to Focus on ~15 mWb Flux Injection

```
Ip (kA):
                                     150.00
Rm (m):
                                       0.45
Bt (T):
                                       0.51
                                       0.82
Bt @ CHI location (T):
Bt multiplier factor:
                                       1.61
li - Plas normalized Induct:
                                       0.30
Enclosed Polo flux (mWb):
                                      12.72
Flux conversion efficieny:
                                       0.70
Injector flux (mWb):
                                      18.18
Itf (kA):
                                   1152.00
footprint width - (cm):
                                      10.00
Inj Curr (kA)
                                      22.60
Plasma Inductance (\muH):
                                       0.08
Plas inductive energy (kJ):
                                       0.95
For d = 15cm, 36 \text{ mWb} = 300kA, I inj = 40kA
Optimization/scaling studies to be used to improve 'd'
```

~ 300kAt (total) needed in inboard coils to generate 15-30 mWb Injector Flux

(Coil current in kA.turns)

It would be useful to study electrode gap variation in future

Bi-polar Outboard coils provide flux shaping capability

(Coil current in kA.turns)

CHI Power Supply will use electrolytic capacitor bank for driving the injector current (22-30 kA for initial studies using 4-modules)

4 - Modules @ 2100V (262V/can): 22kA

4 - Modules @ 3000V (375V/can): 33kA

Transient CHI studies on PEGASUS-III will Optimize and Improve our Understanding of the CHI Scaling Parameters in support of a future CHI deployment on the NSTX-U upper divertor using QUEST/PEGASUS-III—like electrodes

- Develop and test a double biased electrode configuration
- Initiate Transient CHI discharge and optimize
 - Generate currents up to the external PF coil limits (~150kA initially, up to 300kA eventually)
 - Quantify the parameter 'd' and flux shaping effects on the plasma internal inductance
 - Heat CHI plasma using ECH
- Drive a T-CHI discharge using LHI to study synergisms with LHI
- Examine potential of Steady-State (driven) CHI