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Core plasma studies in LTX-

NBI for plasma fueling

» Supplemental high efficiency gas puffing
Effect of NB ion heating, hot ions on T, T, profiles
Detailed confinement studies

» Equilibrium reconstructions constrained with
Thomson scattering and CHERs

How does confinement vary with global recycling?

How would lithium walls impact a compact power plant?

Edge/scrape-off layer studies

Collisionless SOL
What is the effect on 4,7

What fraction of the SOL ions are trapped, and do
not pass to the limiter (>divertor)?

What is the resultant split in wall vs. limiter
(=divertor) power loading?

What are the implications of a low recycling SOL for
divertor design?
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LTX and LTX-B LTH-5
R,

Major Radius 34 —40 cm

Minor Radius a 20 - 26 cm

Vacuum Pumping 6,000 L/s 12,000 L/s 13,000 L/s + Ti
Li Heat/Evap/Cool time 200/10/100 mins 10/10/10 mins 5/5/5 mins
Toroidal Field B 0.17-02T 03T 034T
Plasma Current L, < 85 kA ~ 100 kA >125 kA
Plasma Duration tehot <50 ms <50 ms > 100 ms
Beam Power Pyar 0 > 500 kW 700 kW
Beam Duration tNBI 0 5-6 ms 10-30 ms

+ High field-side limited by a conformal, high-Z wall
+ Lithium coatings on all plasma-facing surfaces
— LTX: Lithium evaporation from pool in lower shells
» LTX-B: Midplane evaporators
» Shell pre-heating not required for evaporation
¢ Operated in hydrogen (gas puffing)
— LTX: Fueled from the high field side midplane
» LTX-B: 35A neutral beam fueling
» improved HFS puffing, topside SGI




New LTX- midplane lithium evaporators

Fast evaporation cycles without need for Uf‘{‘ﬁ
shell pre-heating

— Full evaporation (0.5 g lithium)
now < a minute

Quartz Crystal Deposition Monitors
measure Li film thickness

XPS scans show elemental Li remains
after 1.5 hrs

More upgrades planned
— Larger lithium inventory (6 g)
— Easier loading

— Preferential evaporation on high-field
side PFCs

» Where the plasma limits

— Faster coating, between shots
operation

Only solid lithium coatings to date

Yttria;support tubes

First generation LTX-3 evaporators.
Modified version installed last week



LTX-B is operating with fully lithium coated walls

TR P
No Lithium
Tokamak operated at > 3 kG . First lithium evaporation

: A : Second lithium evaporation
_ at top duration
Requires sef:ond T.F power Updated OH programming
supply. Maximum field ~3.5 kG

100 kA plasma current

0.02s
0.03s

— Further OH power supply
expansion this year

1018 1 £

Short-pulse neutral beam injection

Line integrated density (m-2)

Fully lithium coated plasma-facing LTX-B

surfaces 1073 % pa p
Plasma Current (kA)

Continuing with periodic lithium

evaporation
Fast camera
— Further evaporator upgrades image showing Li |
later this year (yellow-orange)
and Li Il (green)
light




LTX-B neutral beam is operating close to specifications

¢ ~600 kW injected so far, presently 5 msec pulse duration U&‘%—ﬁ
— 700 KW maximum
— Plan to increase pulse length to 15 - 30 msec Beam
» Maintain steady-state density provided by
In tank TAE

Beam Calorimeter
In vessel

Dump

N

Neutral Beam
Source

¢ Beam provides fueling, ion heating (Pyg, nearly 10x Py mic)
¢ CHERSs diagnostic for T, (ORNL) @
+ U. Wisconsin supporting beam operations ﬁ),}
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Significant beam fueling observed

LTX-3 beam power

grid output
e = 17% neut. loss
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¢ Up to 60% beam power deposited
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LTX-3 beam fueling
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Initial indications are that beam
fueling of the discharge is effective

Discharge development needed

Modifications to the TAE beam
underway

+ Higher target density discharges under development



New or improved diagnostics in LTX-f3
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PMI Spectroscopy
Neutral Beam
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Sample imin, Interferometer
Exposure

Probe (SEP) / Plasma TV D. Elliott SOFE/IEEE 2019
Evaporator

Thomson scattering: Improved camera, fibers, dump

Two new lyman-a detector arrays for recycling

Expanded magnetic diagnostics to increase fidelity of reconstructions
ORNL/PPPL: CHERS, multiple visible spectrometers

LOWEUS soft x-ray spectrometer (LLNL)

UCLA: Microwave interferometer & reflectometer



Improved core diagnostics for LTX-f

LTH-5

UCLA profile reflectometer has
been upgraded

— Provides core measurements
of A,
Investigate 1 mm interferometer

upgrade for low-k scattering
(UCLA)

Additional core high-field side
Thomson scattering sightlines
added to improve equilibrium

modeling

— New laser sightline
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Additional new edge Thomson scattering channels for SOL
— Core Thomson shown to be adequate down to n, ~ 2-3 x 10" m-3

with 20 J laser

— New channels employ APD detectors, polychromators to extend

measurement to lower density



Broad modeling effort for unique LTX- physics
Wy

¢ PSI-Tri equilibrium
reconstructions
— Psi-Tet eddy currents
¢ TRANSP integrated analysis
— NUBEAM, NCLASS N
¢ Liwall Fusion — new codes R e s o Tt
— ASTRA-ESC (Cbesc) for
equilibrium, SOL
— Cbshl eddy currents
— HPE Hot Particles

— Cbped for NB ion orbits

» Full ion orbit code

C. Hansen, U. Washington

Cbped — fast ion orbits

Cbes&modelmg /(ull LTX
L. Zakharov, LiWallFusion



Accurate estimate of NB ion losses requires

[

full ion orbits

(o]

Fraction of lost NBI GC ion orbits

Deuterium NBI 0.489

Hydrogen NBI 0.216

Time of particle loss

0

[
5e-6

(a)

I
10e-6

1

0

Fraction of lost Larmor orbits ['L‘U‘\W_ 39
Wy

Deuterium NBI, Bt=0.35,-0.35 T  0.595

Hydrogen NBI Bt=0.35,-0.35T  0.508

Deuter;j NBI, Bt=0.5,-0.5T 0.455

Hydrogen NBI Bt=0.5,-0.5 T 0.045
Life time of lost particles

0

10e-6 20e-6 30e-6

(b)

Integral losses of CX ions generated by 17 keV NBI.

(a) Guiding Center calculations for H (blue) and D (black) loss fraction for the case with
Btor — 0.35 7-.

(b) Larmor orbits calculations of fraction of particle losses for 4 H and D cases with

B;,, = 0.35, —0.35 0.5, —0.5 T.
Leonid E. Zakharov, ID DPP19-GP10.00085, APS-DPP Meeting October 21-25, 2019, Convention Center, Fort Lauderdale, FL




Radial electric field development will
affect equilibrium

z0 GCOrbits z0 GCOrbits z0

(a) (b) (c)
A sample of 32 lost H" 17 keV NBI particle orbits.

(a) ¥ = 0 keV, all 32 trajectories are lost
(b) o¥ = 2 keV, also all 32 trajectories are lost;
(d) ¥ = 7 keV, all 32 trajectories are confined;

[ eonid E. Zakharov, ID DPP19-GP10.00085, APS-DPP Meeting October 21-25, 2019, Convention Center, Fort Lauderdale, FL




Low recycling SOL will be studied in LTX-f3

SOL collisionality very low

_ SOL v* already <0.1 in LTX, <0.01 in a reactor Pl
lon population trapped (confined in the SOL) or ‘D 470!
“passing” (within loss cone, transiting to the divertor) = 468!

— OLc=sin(1/R o) 12 E jgj

— Ruirror here = By /Byes 462}
=>60 - 80% of an initially isotropic ion distribution 460"

trapped in the SOL
— Can’t access divertor without pitch-angle scattering
Very hot SOL (~10 keV) in a reactor

— A4 (passing) ~ poloidal ion gyroradius: 10x 2
increase ©
— 10x reduction in peak heat load E

Total drop in peak divertor heat flux: 25 — 50x 462
— Reduces requirements for Li inventory, flow speed 460
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lllustrative edge modeling of an LTX-like discharge:
no neutrals / strong magnetic bottle effect

Pastukhov Parallel nVj
Potential d/eT momentum ny/To/m
€lo OV “O/TH Outer midplane @ 0.5 ms
']9 .’0.095
1.2 0.307 -0.034
—-0.028
.24 _o. 0.204 1.5 -
0-2 oo ] 0,089 n (2.5X10'8 m3) <T>(70eV)
—-0.11 . |p ® lno.15 1 -
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R (m) R (m) R-Rsep (€M)
* Full ion-ion Fokker-Planck collisions, Ry/(Vy;t;) ~0.01
e Absorbing divertor plates; zero-Neumann BCs on outer (SOL * Simple anomalous diffusion
and PF) boundaries; Dirichlet BC on inner (core) boundary Danlfil = VyD@)Vy fi
— A2
*  Grid resolution (core: Ny, = 24, Ng = 32, N,,, = 96, N, =96) Daw =4m?/s

* ByR=0.08T-m, By/By ~3 (at the outer midplane), m; = my

ﬁ Eedxga " L I
suulation Fusion
(Energy
atory A\ _Sciences)

M. Dorf (LLNL), COGENT modeling. PPPL XGC1 modeling in progress.




Spatially, spectrally resolved UV-VIS diagnostics enable
analysis of plasma-limiter interaction

¢ Suite of spectroscopic diagnostics installed to
support PMI studies:

— Two fast cameras with 2-color adapters
[Scotti RSI 2015] for imaging at 4
wavelengths (Li, O)

— One fast camera for H-a imaging

— High spectral resolution UV spectrometer (for
T, measurements) [Soukhanovskii RS 2010]

— High-throughput visible spectrometer for
molecular spectroscopy [Bell, RSI| 2010]

¢ Radial views aimed at HFS limiter

— Shells consist of welded toroidal segments,
limiters located at welds between segments

Radial camera views
Spectrometer views
Limiting shell edges

LLNL-PRES-791713 H Lawrence Livermore
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory

National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



Fuel recycling, lithium erosion studies planned as a
function of lithium passivation and T+

H-o camera view

+ Recycling inferred from H-a camera and Ly-
a diode on radial views + probes

¢ Lithium influx and sputtering yield Y

— Changes in Y|, with surface chemical
state of lithium coatings (changes in
SBE) -> LiH, Li,O

— Role of thermal sputtering vs
evaporation for lithium influxes in LTX-3

2500

2000

¢ Oxygen influx and sputtering yield: Limiters

1500

— Measure oxygen sputtering/influx with -
oxidation of lithium coatings £

— Study impact of oxygen segregation
within lithium coatings on oxygen influx
and LTX-B high temperature operation

1000

500

0 50 100 150 200 250 300
Toroidal Pixel

LLNL-PRES-791713 B Lawrence Livermore

This work was performed u d the auspices of the U.S. Department of Ene gybyLawrenceLle i
National Laboratory under contra tDE ACSZ 07NA27344. Lawrence Livermore National Security, LLC Natlonal Laboratory



SOL diagnostics: Langmuir probes and RFEA

LTR-5
%% ¢ SOL mirror confined
— Electric fields not confined T
to sheaths OAK
RIDGE

— Loss rate determined by ‘<
ion pitch angle scattering

— Pastukhov potential
@, ~ 0.7 T, for LTX

001“r:‘sf‘a_”5“at°r5 T P ||.|§ — SOL electric field should

eject sputtered impurities

Lo To Signal Ve

IO Cable . . . .
iy + High field side single
b S Langmuir probes

G R S Faraday Cup

¢ Low field side probe

d ¢ Retarding Field Energy
o Analyzer

X. Zhang PSI/NME 2019



UT-K: Sample Exposure Probe for PMI study

Ne GDC LTX-3 Discharges r—Lithium Evaporations
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Mechanical Pump

Exposed sample analyzed in
adjacent Erlnceton University . -
surface science lab u

Mechanism for hydrogen retention in lithium PFCs explored on
LTX-B with Sample Exposure Probe (SEP)

Lithium R Quartz Crystal

Microbalance

SEP inserted flush
with LTX shells

A. Maan RSI 2019; SOFE/IEEE 2019



Summary

LTX-B, the upgrade to LTX, is now fully operational LTS ﬁ
— Modest additional upgrades in progress
Major component of upgrade — NBI — operating well
— Modest beam fueling observed
— Discharge development in progress
» No beam-injected flat T discharges yet
New approach to lithium coatings implemented

— Revamped large-capacity system to be installed in a few
months

Thomson scattering and CHERs both operational

Research goal for this FY: characterize confinement with NBI as
a function of recycling

Focus on SOL studies to follow
— Modeling effort is now underway



