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◆ Core plasma studies in LTX-β
– NBI for plasma fueling

» Supplemental high efficiency gas puffing
– Effect of NB ion heating, hot ions on Ti, Te profiles
– Detailed confinement studies

» Equilibrium reconstructions constrained with 
Thomson scattering and CHERs

Ø How does confinement vary with global recycling?
Ø How would lithium walls impact a compact power plant? 
◆ Edge/scrape-off layer studies

– Collisionless SOL
– What is the effect on 𝛌q?
– What fraction of the SOL ions are trapped, and do 

not pass to the limiter (➮divertor)?
– What is the resultant split in wall vs. limiter 

(➮divertor) power loading?
Ø What are the implications of a low recycling SOL for 

divertor design?
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LTX and LTX-β

◆ High field-side limited by a conformal, high-Z wall
◆ Lithium coatings on all plasma-facing surfaces

– LTX: Lithium evaporation from pool in lower shells
Ø LTX-β: Midplane evaporators
Ø Shell pre-heating not required for evaporation

◆ Operated in hydrogen (gas puffing)
– LTX: Fueled from the high field side midplane
Ø LTX-β: 35A neutral beam fueling 
Ø improved HFS puffing, topside SGI 1.4 m

Parameters LTX LTX-β achieved Planned

Major Radius R0 34 – 40 cm

Minor Radius a 20 – 26 cm

Vacuum Pumping 6,000 L/s 12,000 L/s 13,000 L/s + Ti

Li Heat/Evap/Cool time 200/10/100 mins 10/10/10 mins 5/5/5 mins

Toroidal Field BT 0.17 – 0.2 T 0.3 T 0.34 T

Plasma Current Ip < 85 kA ~ 100 kA >125 kA

Plasma Duration tshot < 50 ms < 50 ms > 100 ms

Beam Power PNBI 0 > 500 kW 700 kW

Beam Duration tNBI 0 5-6 ms 10-30 ms



New LTX-β midplane lithium evaporators
◆ Fast evaporation cycles without need for 

shell pre-heating
– Full evaporation (0.5 g lithium)

now < a minute
◆ Quartz Crystal Deposition Monitors 

measure Li film thickness
◆ XPS scans show elemental Li remains 

after 1.5 hrs
◆ More upgrades planned

– Larger lithium inventory (6 g)
– Easier loading
– Preferential evaporation on high-field 

side PFCs
» Where the plasma limits

– Faster coating, between shots 
operation

◆ Only solid lithium coatings to date

First generation LTX-β evaporators. 
Modified version installed last week

Screen basket (0.5 g capacity)

Yttria support tubes



◆ Tokamak operated at > 3 kG
– Requires second TF power 

supply. Maximum field ~3.5 kG.
◆ 100 kA plasma current

– Further OH power supply 
expansion this year

◆ Short-pulse neutral beam injection
◆ Fully lithium coated plasma-facing 

surfaces
◆ Continuing with periodic lithium 

evaporation
– Further evaporator upgrades 

later this year

LTX-β is operating with fully lithium coated walls

No Lithium
First lithium evaporation
Second lithium evaporation 
Updated OH programming

LTX-β

Fast camera 
image showing Li I 
(yellow-orange) 
and Li II (green) 
light



LTX-𝛽 neutral beam is operating close to specifications

◆ Beam provides fueling, ion heating (PNBI nearly 10× Pohmic)
◆ CHERs diagnostic for Ti (ORNL)
◆ U. Wisconsin supporting beam operations

◆ ~600 kW injected so far, presently 5 msec pulse duration 
– 700 kW maximum
– Plan to increase pulse length to 15 - 30 msec

» Maintain steady-state density
Beam 

provided by 
TAE



Significant beam fueling observed

◆ 700 kW expected NB power

◆ Up to 60% beam power deposited
– Typically 30 – 40%

◆ Higher target density discharges under development

◆ Initial indications are that beam 
fueling of the discharge is effective

◆ Discharge development needed
◆ Modifications to the TAE beam 

underway



New or improved diagnostics in LTX-β

◆ Thomson scattering: Improved camera, fibers, dump
◆ Two new lyman-α detector arrays for recycling
◆ Expanded magnetic diagnostics to increase fidelity of reconstructions
◆ ORNL/PPPL: CHERS, multiple visible spectrometers
◆ LOWEUS soft x-ray spectrometer (LLNL)
◆ UCLA: Microwave interferometer & reflectometer 

D. Elliott SOFE/IEEE 2019



◆ Additional new edge Thomson scattering channels for SOL 
– Core Thomson shown to be adequate down to ne ~ 2-3 × 1017 m-3 

with 20 J laser
– New channels employ APD detectors, polychromators to extend 

measurement to lower density

◆ UCLA profile reflectometer has 
been upgraded
– Provides core measurements 

of ñe

◆ Investigate 1 mm interferometer 
upgrade for low-k scattering 
(UCLA)

◆ Additional core high-field side 
Thomson scattering sightlines 
added to improve equilibrium 
modeling
– New laser sightline

Improved core diagnostics for LTX-𝛽

Reflectometer

Thomson

Not
normalized



Broad modeling effort for unique LTX-β physics

◆ PSI-Tri equilibrium 
reconstructions
– Psi-Tet eddy currents

◆ TRANSP integrated analysis
– NUBEAM, NCLASS

◆ LiWall Fusion – new codes
– ASTRA-ESC (Cbesc) for 

equilibrium, SOL
– Cbshl eddy currents
– HPE Hot Particles
– Cbped for NB ion orbits

» Full ion orbit code

L. Zakharov, LiWallFusion

C. Hansen, U. Washington
PSI-Tri Psi-Tet

Cbesc modeling – full LTX
Cbped – fast ion orbits



Accurate estimate of NB ion losses requires 
full ion orbits



Radial electric field development will 
affect equilibrium



Low recycling SOL will be studied in LTX-β
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◆ SOL collisionality very low
– SOL 𝛎* already <0.1 in LTX, <0.01 in a reactor

◆ Ion population trapped (confined in the SOL) or 
“passing” (within loss cone, transiting to the divertor)
– ΘLC=sin-1(1/Rmirror)1/2

– Rmirror here = Bdiv/BLFS

◆ ➪60 - 80% of an initially isotropic ion distribution 
trapped in the SOL
– Can’t access divertor without pitch-angle scattering

◆ Very hot SOL (~10 keV) in a reactor
– λq (passing)  ~ poloidal ion gyroradius: 10×

increase
– 10× reduction in peak heat load

◆ Total drop in peak divertor heat flux: 25 – 50×
– Reduces requirements for Li inventory, flow speed
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Illustrative edge modeling of an LTX-like discharge:    
no neutrals / strong magnetic bottle effect

Outer midplane @ 0.5 ms
Potential
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• Full ion-ion Fokker-Planck collisions, ⁄,% ('./0/)~0.01
• Absorbing divertor plates; zero-Neumann BCs on outer (SOL 

and PF) boundaries; Dirichlet BC on inner (core) boundary
• Grid resolution (core: 67 = 24,6< = 32,6>∥ = 96,6A =96)

• BC, = 0.08 T ⋅ m, ⁄BC B< ~3 (at the outer midplane), )/ = )*

$% = 70 #'ΦIJ
KLMNOL = 0

• Simple anomalous diffusion 
PQR S/ = T7P(U)T7S/
PQR = 4)V/W

Ip
Bϕ

-1

-0.5

0

0.5

1

1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

<T> (70 eV)

-V|| (50 km/s)

Er (5 kV/m)

n (2.5X1018 m-3)

R-Rsep (cm)

co-Ip

M. Dorf (LLNL), COGENT modeling. PPPL XGC1 modeling in progress.

Pastukhov



◆ Suite of spectroscopic diagnostics installed to 
support PMI studies:
– Two fast cameras with 2-color adapters 

[Scotti RSI 2015] for imaging at 4 
wavelengths (Li, O)

– One fast camera for H-⍺ imaging 
– High spectral resolution UV spectrometer (for 

Ti measurements) [Soukhanovskii RSI 2010]
– High-throughput visible spectrometer for 

molecular spectroscopy [Bell, RSI 2010]
◆ Radial views aimed at HFS limiter

– Shells consist of welded toroidal segments, 
limiters located at welds between segments

Spatially, spectrally resolved UV-VIS diagnostics enable 
analysis of plasma-limiter interaction 

Radial camera views
Spectrometer views
Limiting shell edges

LLNL-PRES-791713
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



◆ Recycling inferred from H-⍺ camera and Ly-
⍺ diode on radial views + probes

◆ Lithium influx and sputtering yield YLi:
– Changes in YLi with surface chemical 

state of lithium coatings (changes in 
SBE) -> LiH, Li2O

– Role of thermal sputtering vs 
evaporation for lithium influxes in LTX-β

◆ Oxygen influx and sputtering yield:
– Measure oxygen sputtering/influx with 

oxidation of lithium coatings
– Study impact of oxygen segregation 

within lithium coatings on oxygen influx 
and LTX-β high temperature operation 

Fuel recycling, lithium erosion studies planned as a 
function of lithium passivation and Tsurf

HFS probes

H-⍺ camera view

Li I brightness 
(670 nm)

Limiters

LLNL-PRES-791713
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



SOL diagnostics: Langmuir probes and RFEA

◆ SOL mirror confined
– Electric fields not confined 

to sheaths
– Loss rate determined by 

ion pitch angle scattering
– Pastukhov potential          
𝜑p ~ 0.7 Te for LTX

– SOL electric field should 
eject sputtered impurities

◆ High field side single 
Langmuir probes

◆ Low field side probe
◆ Retarding Field Energy 

Analyzer

X. Zhang PSI/NME 2019



UT-K: Sample Exposure Probe for PMI study

Mechanism for hydrogen retention in lithium PFCs explored on 
LTX-β with Sample Exposure Probe (SEP)

Lithium 
Evaporator

Quartz Crystal 
Microbalance

SEP inserted flush 
with LTX shells

A. Maan RSI 2019; SOFE/IEEE 2019

Exposed sample analyzed in 
adjacent Princeton University 
surface science lab



◆ LTX-β, the upgrade to LTX, is now fully operational
– Modest additional upgrades in progress

◆ Major component of upgrade – NBI – operating well
– Modest beam fueling observed
– Discharge development in progress

» No beam-injected flat T discharges yet
◆ New approach to lithium coatings implemented

– Revamped large-capacity system to be installed in a few 
months

◆ Thomson scattering and CHERs both operational
◆ Research goal for this FY: characterize confinement with NBI as 

a function of recycling
◆ Focus on SOL studies to follow

– Modeling effort is now underway

Summary


