28th October 2019 20th International Spherical Torus Workshop **MAST-U experimental programme: From first plasma to first campaign**

AJ Thornton¹, D Battaglia², G Cunningham¹, JR Harrison¹, A Kirk¹ and the MAST-U Team

¹United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB ²Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America

This work was part funded by the RCUK Energy Programme [grant number EP/T012250/1]. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission

Introduction

MAST Upgrade contributes to 3 primary objectives:

- 1) Developing novel exhaust concepts
- 2) Knowledge base for ITER (e.g. understanding and controlling ELMs with 3D fields)
- 3) Feasibility of spherical tokamak as a future fusion device

One focus of MAST-U is on exhaust physics

 Alternative divertor configurations, specifically the super-X

How to we go about generating a plasma for the first time in MAST-U?

How do we produce and control a super-X plasma?

MAST-U capabilities

MAST-U represents a significant change when compared to MAST

- Off axis neutral beam heating
- New coil set
 - Additional coils for control, increased flux swing and toroidal field magnitude
- Gas fuelling

- P1 Solenoid for plasma current
- P4, P5 Core radial position + shape
- P6 Core vertical position
- PX, D1, X-point position + divertor leg D2, D3
- DP X-point position + flux expansion
- D5 Super-X leg radius
- D6, D7 Super-X flux expansion

UK Atomic Energy Authority

MAST-U capabilities

MAST-U represents a significant change when compared to MAST

- Off axis neutral beam heating
- New coil set
 - Additional coils for control, increased flux swing and toroidal field magnitude
- Gas fuelling

High field side – 12 total valves Low field side – 4 valves Private flux region – 6 valves per divertor Divertor chamber – 24 valves per divertor

October 2019

UK Atomic Energy Authority

Thornton

MAST-U first plasma

Breakdown

Unique features of MAST-U;

- Large number of poloidal field coils
- Highly flexible for null formation

Modelling required to take advantage of the coil set

Performed in collaboration with PPPL (D. Battaglia et al [1])

<u>(</u> **Optimise null, loop volts, vertical and radial stability**

- Outer most coils (P4/P5) are used for radial control
- Small radius coils (blue); act to extend the solenoid increasing vertical null extent; reduce vertical stability
- Larger radius coils (green); act to produce a large null region, cancelling the solenoid field

In-vessel filament provides pre-ionisation source

-1

-2

Breakdown

UK Atomic Energy Authority

Investigate the use of all the D coils against a limited set, plus solenoid

• Evaluate based on $E_{\phi}B_t/B_p > 1$ kV/m for breakdown & field evolution at 4 ms (grey)

- Coils coloured yellow are powered
- Similar field structures (slight improvement in multiple coil case)
- Three coil: close to current limits
 - Multiple coil: gives more operating space for current
 - Sufficient null and electric field in both cases

MAST-U;

- Adjust initial gas fuelling
- Early divertor formation
- Early beam heating

Plasma current ramp up

Once a plasma has been formed, and is fully ionised, the plasma current can be increased

The ramp up determines the current profile in the plasma

- Excessive rates produce MHD activity; slow ramps produce high inductance plasmas
- Wish to maintain a broad current profile (low li) as this gives natural elongation
 - Minimises poloidal field coil currents

MAST experience; Optimise lp ramp rate

JK Atomic Enerav Authoritv

Initial control of MAST-U plasmas will be via feed forward

 Coil currents are pre-programmed to give a certain shape of evolution

Use a free boundary equilibrium solver to generate a confined plasma, with the MAST-U coil set (FIESTA)

 Understand what currents are required and which coils can be used for control

Take key parameters from a MAST pulse;

- Plasma current and solenoid swing
- Current profiles
- Generate individual equilibria that show the discharge evolution
 - Aim for a scan in the outer target radius

USION

October 2019

Z(m)

Plasma current ramp up phase

- Provide radial control with the P4 and P5 coils
- Waveforms follow on from those used in breakdown

Follow MAST technique of increasing the radius during the current ramp

• Initially, confining a 10 kA plasma, rising up to 600 kA at 100 ms

Plasma limited on the centre column in this example during ramp up **Conventional divertor formation**

At a suitable elongation, aim to divert the plasma

- D1, D2 and Px coils can be driven up to form a conventional divertor shape
- Control of divertor leg position and nose flux expansion: D2, D3, Dp

October 2019

Super-X divertor formation

- Increase conventional strike point radius with D3
- Drive D5 up to move the strike point out across the horizontal tile to T5 Subsequently, the shape can be refined;
- D5: strike point position
- D6/D7: Super-X chamber flux expansion

October 2019

UK Atomic Energy Authority

International Spherical Torus Workshop, Frascati, Italy

Modelled discharge has several phases, each with different coils used

• Premagnetisation, breakdown, limiter, divertor, super-X, ramp down

×

Plasma shape control

Aim to have automated, fed back plasma control

- First step: Identify what coils manipulate a given shape parameter
- Second step: Real time reconstruction to provide variable to feedback on

Control points

- Inner radius (R(in))
- Outer radius (R(out))
- Outer strike point (RoutL)
- Inner strike point (RinL)
- X point (RlowX, ZlowX)
- Nose gap (Ng)

Determine which coils allow the control of each of these points

International Spherical Torus Workshop, Frascati, Italy

Plasma shape control

To understand the use of the coils in MAST-U

- Take an equilibrium, add a fixed amount of current in each coil individually
- Determine the effect on each of the control points
 - How much does it move for a given amount of current in a given coil?

Result

A given coil affects all control points

Calculate the rate a control point changes for a given coil

Get rate, M, for all coils, I, for each control point, P

$$MI = P$$

 Inverse of M; gives current in each coil for a specific change in only one parameter

This defines a virtual circuit

Plasma shape control

Use the virtual circuit to control the outer leg location

Request 1 cm steps in the location of the leg

Method produces a scan in the strike point location

- Other control points remain fixed
- Simplified control of the shape compared to individually programming coil current

Composition of the coils in the virtual circuit varies;

- Depends on the equilibrium
- Need to switch between circuits as the shot proceeds

Required plasma parameters

UK Atomic Energy Authority

Plasma inductance (I_i) affects elongation (κ) and control of plasma

- At what I_i(2) can a Super-X divertor be formed with the available coil current?
- Generate a test case at 700 kA at zero solenoid current

Final operating scenario; $I_i(2) = 0.7$; $\kappa = 2.5$; 1 MA

• Minimum; $I_i(2) = 1.2$; $\kappa = 1.8$; 700 kA

Compare where these sit in MAST operating space

Divertor Configurations in MAST-U

MAST Upgrade has considerable flexibility for studying conventional and alternative divertor configurations

UK Atomic Energy Authority

International Spherical Torus Workshop, Frascati, Italy

Divertor Configurations in MAST-U

MAST Upgrade has considerable flexibility for studying conventional and alternative divertor configurations

Divertor power loading

Alternative divertors offer a potential solution to the challenge of power exhaust in future devices

Target power load can be determined using the formula below;

$$q_{\perp} = \frac{P_{in}(1 - f_r)}{2\pi\lambda_q R_t f_x N_d} \sin(\beta)$$

To modify the heat flux arriving at the tile;

- Increase the flux expansion (f_x) : limited by tile shadowing
- Increase the number of divertors (N_d)
- Broaden the scrape off layer (λ_q)
- Increase the target radius
- Raise the fraction of power radiated (f_r)

Super-X divertor physics

Investigate the Super-X divertor (SXD)^[1]

SXD aims to reduce the power load arriving at the target

- Increase total flux expansion at large R_t (drops parallel heat flux, increases area)
- Increase the target radius, R_{t} (increase wetted area)
- Large connection length (greater divertor volume, promotes detachment)
- Divertor closure enhances neutral baffling

[1] Valanju et al Phys Plasmas 16 (2009) 056110

$$T_e^t \propto \frac{(q_{\parallel}^u)^{10/7} \cdot (1 - f_{\rm rad})^2}{n_u^2 L_{\parallel}^{4/7}} \frac{R_u^2}{R_t^2}$$

These three effects can reduce the target temperature, promoting detachment

Detachment: power and particle flux to the target decreases due to losses in the divertor volume

MAST-U Super-X divertor

SOLPS can be used to model the Super-X divertor

• First benchmark results from MAST before extending to MAST-U

Extract radial transport coefficients that well describe midplane and target data

Then use these to extrapolate to MAST-U

E. Havlíčková et al, PPCF 57 (2015) 115001

MAST-U Super-X divertor

Investigate different magnetic configurations in MAST-U

Conventional divertor (CD), SXD1 with high flux expansion, SXD2 with low flux expansion

Super-X geometry pushes the target plasma into detachment, reducing the heat flux density and temperature at the target to ~zero.

Attached regime in SXD in L-mode can be achieved if **the heating power** or the **pumping speed** is increased at the same density.

E. Havlíčková et al, PPCF 57 (2015) 115001

MAST-U assessment of the Super-X divertor

Initial experiments will focus on forming the Super-X divertor

- Make early comparisons between conventional and SXD divertor behaviour
 - Scan target radius and evaluate the heat flux to the tiles
 - Determine the access to detachment and how it varies
 - Investigate the control of the detachment front by varying the poloidal flux expansion

Produce 400 kA plasma first and then extend to higher current

• Higher current decreases λ_q which will affect parallel heat flux

UK Atomic Energy Authority

MAST-U assessment of the Super-X divertor

USION ENER

How does the alternative divertor configurations (ADCs) affect the target power load/onset of detachment?

- Operational window (attached/detached, L/H mode, ELM/ELM free)
- Effect of ADCs on the target heat load, scaling with geometry
- Flux expansion in the SXD comparison with past modelling
- Baffling and effect on core confinement
- SOL width and transport characterisation and multimachine scaling
- ELM heat loads

Does modelling support the experimental results?

High-Level Goals of Tokamak Science

MAST-U restart phase

- Commissioning: 300 shots
- Restart: 600 shots

MAST-U first campaign

- Internal and EUROfusion components
- Total shots: 1600

Shots Allocated by Topic Area

XX

High-Level Goals for first campaign

Exhaust Physics

- Understand the effect of divertor magnetic configuration on SOL transport, power and particle losses and loads to divertor PFCs
- Validate the MAST Upgrade design concept, e.g. neutral baffling, power deposition to divertor PFCs
- Study effect of divertor configuration on detachment physics
- Understand divertor detachment and the roles of atomic and molecular physics, magnetic geometry and topology
- Understand the role of filaments on particle and heat deposition to the first wall and divertor.

High-Level Goals for first campaign

Integrated Scenarios

- Develop scenarios on MAST-U to enable the scientific programme
- Broaden the MAST-U operating space and maximise plasma performance
- Optimise q profile and neutral beam heating (on and off axis)
- Explore operating space (and limits) with attached and detached divertors, in Lmode and H-mode
- Study effect of divertor configuration on transport

Fast Particle Physics

- Compare effect of on and off-axis NBI on fast ion redistribution
- Study redistribution and loss of fast particles and compare to state-of-the-art modelling tools (HALO)
- Study non-linear wave-particle interactions, especially the excitation and damping of TAEs, CAEs in experiments

High-Level Goals for first campaign

MHD & Pedestal Physics

- Characterise and correct for error fields
- Study the effects of divertor configuration on H-mode access and quality
- Understand role of magnetic field, main chamber neutrals on pedestal performance and ELMs
- Study performance limiting MHD at high β , incl. NTMs, LLMs, RWMs
- Develop a predictive pedestal model and validate against present experiments
- Understand how to mitigate and suppress ELMs using RMPs and explore stationary ELM-free or small ELM regimes

Summary

UK Atomic Energy Authority

Extensive preparations have been made for the start of MAST-U plasmas and first campaign

- Breakdown modelling and recipes prepared for first plasma
- Strategy for initial plasma formation using feedforward control developed
- Techniques for feed back control using virtual circuits generated

Key to the MAST-U programme is the investigation of the Super-X divertor

• Assessment of alternative divertor configurations for power handling, scrape off layer transport and particle fluxes to the target

The MAST-U programme also covers many other key areas of plasma physics

Pedestal physics, scenario development, fast ion physics, ELM control and mitigation

We look forward to welcoming collaborators to the first experiments on MAST-U

• First plasma: December 2019; First campaign: Summer 2020

