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MAST Upgrade contributes to 3 primary objectives:  

1) Developing novel exhaust concepts 

2) Knowledge base for ITER (e.g. understanding and controlling ELMs with 3D fields)

3) Feasibility of spherical tokamak as a future fusion device

Introduction

One focus of MAST-U is on exhaust 
physics

• Alternative divertor configurations, 
specifically the super-X

How to we go about generating a plasma 
for the first time in MAST-U?

How do we produce and control a super-X 
plasma?
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MAST-U represents a significant change when compared to MAST

• Off axis neutral beam heating

• New coil set

• Additional coils for control, increased flux swing and toroidal field magnitude

• Gas fuelling

MAST-U capabilities

P1 Solenoid for plasma current

P4, P5 Core radial position + shape

P6 Core vertical position

PX, D1, X-point position + divertor leg

D2, D3

DP X-point position + flux expansion

D5 Super-X leg radius

D6, D7 Super-X flux expansion
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MAST-U represents a significant change when compared to MAST

• Off axis neutral beam heating

• New coil set

• Additional coils for control, increased flux swing and toroidal field magnitude

• Gas fuelling

MAST-U capabilities

High field side – 12 total valves

Low field side – 4 valves

Private flux region – 6 valves per divertor

Divertor chamber – 24 valves per divertor
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MAST-U first plasma
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Unique features of MAST-U;

• Large number of poloidal field coils

• Highly flexible for null formation

Modelling required to take advantage of the coil set

• Performed in collaboration with PPPL (D. Battaglia et 
al [1])

Optimise null, loop volts, vertical and radial stability

• Outer most coils (P4/P5) are used for radial control

• Small radius coils (blue); act to extend the solenoid 
increasing vertical null extent; reduce vertical stability

• Larger radius coils (green); act to produce a large null 
region, cancelling the solenoid field

In-vessel filament provides pre-ionisation source

Breakdown
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Investigate the use of all the D coils against a limited set, plus solenoid

• Evaluate based on EfBt/Bp > 1 kV/m for breakdown & field evolution at 4 ms (grey)

Breakdown

• Coils coloured yellow are 

powered

• Similar field structures (slight 

improvement in multiple coil 

case)

• Three coil: close to current 

limits

• Multiple coil: gives more 

operating space for current

• Sufficient null and electric field 

in both cases

3 D coil Multi D coil

D Battaglia et al APS 2017
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Once a plasma has been formed, and is fully ionised, the plasma current can be 
increased

The ramp up determines the current profile in the plasma

• Excessive rates produce MHD activity; slow ramps produce high inductance 
plasmas

Wish to maintain a broad current profile (low li) as this gives natural elongation

• Minimises poloidal field coil currents

MAST experience;

• Optimise Ip ramp rate

• Increase outer plasma radius

MAST-U;

• Adjust initial gas fuelling

• Early divertor formation

• Early beam heating

Plasma current ramp up
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Initial control of MAST-U plasmas will be via feed 
forward

• Coil currents are pre-programmed to give a certain 
shape of evolution

Use a free boundary equilibrium solver to generate a 
confined plasma, with the MAST-U coil set (FIESTA)

• Understand what currents are required and which 
coils can be used for control

Take key parameters from a MAST pulse;

• Plasma current and solenoid swing

• Current profiles

• Generate individual equilibria that show the 
discharge evolution

• Aim for a scan in the outer target radius

Plasma simulation
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Plasma current ramp up phase

• Provide radial control with the P4 and P5 coils

• Waveforms follow on from those used in breakdown

Follow MAST technique of increasing the radius during the current ramp

• Initially, confining a 10 kA plasma, rising up to 600 kA at 100 ms

Plasma simulation

2 ms 50 ms 100 ms
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Plasma simulation

120 ms110 ms 150 ms

Plasma limited on the centre column in this example during ramp up

Conventional divertor formation

At a suitable elongation, aim to divert the plasma

• D1, D2 and Px coils can be driven up to form a conventional divertor shape

• Control of divertor leg position and nose flux expansion: D2, D3, Dp
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Plasma simulation

Super-X divertor formation

• Increase conventional strike point radius with D3

• Drive D5 up to move the strike point out across the horizontal tile to T5

Subsequently, the shape can be refined;

• D5: strike point position

• D6/D7: Super-X chamber flux expansion

220 ms180 ms 280 ms
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Modelled discharge has several phases, each with different coils used

• Premagnetisation, breakdown, limiter, divertor, super-X, ramp down

Plasma simulation
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Aim to have automated, fed back plasma control

• First step: Identify what coils manipulate a given shape parameter

• Second step: Real time reconstruction to provide variable to feedback on

Control points

Plasma shape control

• Inner radius (R(in))

• Outer radius (R(out))

• Outer strike point (RoutL)

• Inner strike point (RinL)

• X point (RlowX, ZlowX)

• Nose gap (Ng)

Determine which coils allow the control of each 
of these points
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To understand the use of the coils in MAST-U

• Take an equilibrium, add a fixed amount of current in each coil individually

• Determine the effect on each of the control points

• How much does it move for a given amount of current in a given coil?

Plasma shape control

Result

A given coil affects all control points

Calculate the rate a control point changes 
for a given coil

• Get rate, M, for all coils, I, for each 
control point, P

• Inverse of M; gives current in each coil 
for a specific change in only one 
parameter

This defines a virtual circuit

M𝐼 = 𝑃
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Use the virtual circuit to control the outer 
leg location

• Request 1 cm steps in the location of the 
leg

Method produces a scan in the strike 
point location

• Other control points remain fixed

• Simplified control of the shape compared 
to individually programming coil current

Composition of the coils in the virtual 
circuit varies;

• Depends on the equilibrium

• Need to switch between circuits as the 
shot proceeds

Plasma shape control
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Plasma inductance (li) affects elongation (κ) and control of 
plasma

• At what li(2) can a Super-X divertor be formed with the 
available coil current?

• Generate a test case at 700 kA at zero solenoid current 

Final operating scenario; li(2) = 0.7; κ = 2.5; 1 MA

• Minimum; li(2) = 1.2; κ = 1.8; 700 kA

Compare where these sit in MAST operating space

Required plasma parameters

Final

Min.

Vertical stability: fs=2.2; mi=1.2
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MAST Upgrade has considerable flexibility for studying conventional and 
alternative divertor configurations

Conventional Vertical Target

Snowflake

X divertor

Inner Strike Super-X
Super-X

Divertor Configurations in MAST-U
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Negative triangularity

MAST Upgrade has considerable flexibility for studying conventional and 
alternative divertor configurations

Vertical Target

Snowflake

X divertor

Inner Strike Super-X
Super-X

Divertor Configurations in MAST-U
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Alternative divertors offer a potential solution to the challenge of power 
exhaust in future devices

Target power load can be determined using the formula below;

Divertor power loading

𝑞⊥ =
𝑃𝑖𝑛 1 − 𝑓𝑟
2𝜋𝜆𝑞𝑅𝑡𝑓𝑥𝑁𝑑

sin(𝛽)

To modify the heat flux arriving at the tile;

• Increase the flux expansion (fx): limited by tile shadowing

• Increase the number of divertors (Nd)

• Broaden the scrape off layer (𝜆𝑞)

• Increase the target radius

• Raise the fraction of power radiated (fr)
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Investigate the Super-X divertor (SXD) [1]

SXD aims to reduce the power load arriving at the target

• Increase total flux expansion at large Rt (drops parallel heat flux, increases area)

• Increase the target radius, Rt (increase wetted area)

• Large connection length (greater divertor volume, promotes detachment)

• Divertor closure enhances neutral baffling

Super-X divertor physics

[1] Valanju et al Phys Plasmas 16 (2009) 056110

These three effects can reduce the target 
temperature, promoting detachment

• Detachment: power and particle flux to the 
target decreases due to losses in the divertor 
volume
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SOLPS can be used to model the Super-X divertor

• First benchmark results from MAST before extending to MAST-U

MAST-U Super-X divertor

E. Havlíčková et al, PPCF 57 (2015) 115001

Extract radial transport coefficients that well describe midplane and target data

• Then use these to extrapolate to MAST-U
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Investigate different magnetic configurations in MAST-U

• Conventional divertor (CD), SXD1 with high flux expansion, SXD2 with low flux 
expansion

MAST-U Super-X divertor

MAST-U

Super-X geometry pushes the target plasma into detachment, reducing the heat 

flux density and temperature at the target to ~zero.

Attached regime in SXD in L-mode can be achieved if the heating power or  the 

pumping speed is increased  at the same density.
E. Havlíčková et al, PPCF 57 (2015) 115001

MAST

CD

SXD1

SXD2
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Initial experiments will focus on forming the Super-X divertor

• Make early comparisons between conventional and SXD divertor behaviour

• Scan target radius and evaluate the heat flux to the tiles

• Determine the access to detachment and how it varies

• Investigate the control of the detachment front by varying the poloidal flux 
expansion

MAST-U assessment of the Super-X divertor

Produce 400 kA plasma first and then extend to higher current

• Higher current decreases 𝜆𝑞 which will affect parallel heat flux
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MAST-U assessment of the Super-X divertor

How does the alternative divertor configurations 
(ADCs) affect the target power load/onset of 
detachment?

• Operational window (attached/detached, L/H mode, 
ELM/ELM free)

• Effect of ADCs on the target heat load, scaling with 
geometry

• Flux expansion in the SXD – comparison with past 
modelling

• Baffling and effect on core confinement

• SOL width and transport characterisation and multi-
machine scaling

• ELM heat loads

Does modelling support the experimental results?
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High-Level Goals of Tokamak Science

Shots Allocated by Topic Area

MAST-U restart phase

• Commissioning: 300 shots

• Restart: 600 shots

MAST-U first campaign

• Internal and EUROfusion components

• Total shots: 1600
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Exhaust Physics

• Understand the effect of divertor magnetic configuration on SOL transport, 
power and particle losses and loads to divertor PFCs

• Validate the MAST Upgrade design concept, e.g. neutral baffling, power 
deposition to divertor PFCs

• Study effect of divertor configuration on detachment physics

• Understand divertor detachment and the roles of atomic and molecular physics, 
magnetic geometry and topology

• Understand the role of filaments on particle and heat deposition to the first wall 
and divertor.  

High-Level Goals for first campaign
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Integrated Scenarios

• Develop scenarios on MAST-U to enable the scientific programme

• Broaden the MAST-U operating space and maximise plasma performance

• Optimise q profile and neutral beam heating (on and off axis)

• Explore operating space (and limits) with attached and detached divertors, in L-
mode and H-mode

• Study effect of divertor configuration on transport 

Fast Particle Physics

• Compare effect of on and off-axis NBI on fast ion redistribution 

• Study redistribution and loss of fast particles and compare to state-of-the-art 
modelling tools (HALO) 

• Study non-linear wave-particle interactions, especially the excitation and 
damping of TAEs, CAEs in experiments 

High-Level Goals for first campaign
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MHD & Pedestal Physics

• Characterise and correct for error fields

• Study the effects of divertor configuration on H-mode access and quality

• Understand role of magnetic field, main chamber neutrals on pedestal 
performance and ELMs

• Study performance limiting MHD at high β, incl. NTMs, LLMs, RWMs

• Develop a predictive pedestal model and validate against present experiments

• Understand how to mitigate and suppress ELMs using RMPs and explore 
stationary ELM-free or small ELM regimes

High-Level Goals for first campaign
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Extensive preparations have been made for the start of MAST-U plasmas 
and first campaign

• Breakdown modelling and recipes prepared for first plasma

• Strategy for initial plasma formation using feedforward control developed

• Techniques for feed back control using virtual circuits generated

Key to the MAST-U programme is the investigation of the Super-X divertor

• Assessment of alternative divertor configurations for power handling, scrape 
off layer transport and particle fluxes to the target

The MAST-U programme also covers many other key areas of plasma 
physics

• Pedestal physics, scenario development, fast ion physics, ELM control and 
mitigation

We look forward to welcoming collaborators to the first experiments on 
MAST-U

• First plasma: December 2019; First campaign: Summer 2020

Summary


