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ORNL collaborating world-wide to help close 
science and technology gaps for low-A tokamaks 

•  U.S. community-driven, long term planning is considering 
a mid-sized, high power density tokamak that would 
enable development of a compact, fusion pilot-plant 

•  Can sustained, low-A H-mode scenarios move beyond 
carbon PFCs?  Are alternative divertors required? 

–  Assisting in NSTX-U PFC engineering for Recovery, exploring 
advanced radiative divertors in MAST-U and studying SOL heat flux 
width scaling to high field in ST40 

–  Examining the effect of Li PFCs on core Ti, rotation in LTX-β

•  Can the reliance on steady-state NBI be reduced? 
–  Starting collaboration with ST40 on scoping use of ECH/EBW 

–  Expect to resume HHFW participation on NSTX-U post-Recovery 

•  Can STs reduce the need for inductive startup?  
J.E. Menard et al., NF (2016) 

J.E. Menard, Phil. Trans. R. Soc. A (2019) 
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Initiating current without induction from central 
solenoid remains critical challenge facing STs 

•  Follow up experiment to PEGASUS at University of 
Wisconsin-Madison focused on non-inductive startup 
techniques  

• Electron Bernstein waves (EBW) can be used to 
address non-solenoidal plasma startup, ramp-up and 
sustainment in overdense plasmas 

• Update on PEGASUS-III EBW activities  
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Elimination of solenoid greatly simplifies ST design 
but requires non inductive startup pathway 

•  DOE-Funded Mission: 
Solving 1 MA solenoid-free 
startup in NSTX-U  

•  Non-solenoidal startup and 
rampup techniques being 
studied both in US and 
internationally  

•  Collaboration will focus on 
EBW and ECH techniques  G. Taylor, et al, RF Power in Plasmas (2015)  
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PEGASUS-III provides the US with a non-solenoidal 
startup development station 

Parameter PEGASUS PEGASUS - 
UPGRADE 

Rsol [cm] 4.9 N/A 

Isol [kA]   24 0 

ψsol (mWb) 40 0 

NTF 12 24 

NTFT X ITF 0.288 MA 1.15 MA 

BT,max [T]  
at R0 ~0.4 m 0.15 0.60 

A 1.15 1.22 

BT Flattop 
[ms] 50 100 

TF Conductor 
Area [cm2] 13.2 151 

Ip Target [MA] 0.2 0.3 

PEGASUS 
PEGASUS 
UPGRADE 

PEGASUS-III: US Startup 
Development Station 
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EBW heating/CD to be explored as component of 
fully non-inductive ST startup and sustainment 

•  EBW heating capability may 
synergistically enhance LHI induced Ip 
current by lowering resistivity  
–  Te increases compatibility with non-

inductive sustainment (i.e. NBCD)  
–  Potential for direct RF startup  
–  Initial concept: ~500 kW EBW RF, 8 GHz 

• Collaboration between ORNL, ENEA, UW-Madison 
–  Providing modeling, hardware expertise and experimental 

operations support  

fsource=8 GHz 
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EBWs provide path to electron heating/current 
drive in overdense plasmas 

•  Low magnetic fields, high ne of 
PEGASUS-III plasmas prohibit use of 
traditional ECH for many scenarios 
–  Additional heating/current needed for 

non-solenoidal startup  

–  EBW can couple to and propagate in 
overdense plasmas (ωpe > Ωce) 

•  EBWs have been used successfully 
in STs and stellarators for heating 
& CD  

Example of characteristic frequencies 
in PEGASUS UPGRADE with BT0=0.346 T, 

ne(0) = 1019 m-3 
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Overdense plasmas require alternative to 
EC heating methods 

•  EBWs are perpendicularly propagating, 
electrostatic, hot plasma waves 
–  EBWs do not experience a density cutoff 

in the plasma 

–  EBWs cannot propagate in vacuum   è 
must launch O- or X-modes to mode 
couple to EBW  

•  EBWs absorbed near Doppler 
broadened resonance 
–  Increase in n|| results in shift of resonance 

location:  
–  Observed for off-midplane launch in STs  

ω − k||ν || − nΩ = 0

8 GHz,  
Ln = 2 cm 
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Preliminary modeling to assess EBW feasibility with 
increase in PEGASUS toroidal field 

•  Projections suggest increase in toroidal field may result in 
higher Te for LHI target plasmas for EBW modeling  
–  Currently, Te(0) = 200 eV in LHI discharges  

ne(0)=1x1019 m-3, Te(0) = 400 eV  
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GENRAY/CQL3D modeling shows absorption, 
current drive near ρ = 0.2 

•  Source frequency of 8 GHz was 
used for preliminary modeling 
–  Experimental target of ~400 kW injected 

into the plasma 
–  BT0=0.339 T, 2.5x current TF in Pegasus  

–  Poloidal launch angle of 30° above 
midplane, n||=-0.55 to -0.45 

•  Absorption localized near 
fundamental EC resonance 
–  ~30-40 kA of driven current with 400 kW 

of injected power 

GENRAY EBW Ray-tracing 
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Modeling to provide optimization of EBW system 

•  GENRAY/CQL3D will calculate EBW propagation, absorption 
and driven current 
–  OXB model in GENRAY includes analytic formula, providing a rough 

estimate of conversion efficiency, includes collisional damping 
calculations 

–  CQL3D can simulate SXR signals  

•  IPS-FASTRAN framework to provide integrative modeling 
approach 

•  Finite-element COMSOL Multiphysics code will be used to 
model antenna and O-X coupling  
–  Full-wave modeling with a cold plasma slab  

–  Allows for direct comparison to measured electric field  
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IPS-FASTRAN provides integrative modeling approach 

8 J.M. Park/APS/Nov. 2013 J.M. Park/APS/Nov. 2013 

•   Accelerate repeated cycle of modeling, experimental 
validation, and scenario design/development 

•   Allow plug-in new codes identified important for optimization 

FASTRAN has Been Developed in a Modern Modeling 
Framework: Integrated Plasma Simulator 

Plasma State Component 

 

 

Simulation Driver Component 

ITERATIVE SOLUTION of d/dt=0 

Transport 

RF sources  

MHD 
stability 

Energetic 
particle 
sources 

(NBI) 

Plasma Equilibrium Flux function, Plasma Profiles, Source Terms (NB, RF), Current Drive, Distribution Function, … 

Fueling 
particle 
sources 

Turbulent 
transport 

coeff. 
Neo- 

classical 
transport 

coeff. 

MHD 
equilibrium 

Fokker 
Planck solver 

NUBEAM 

FRANTIC 

CQL3D FASTRAN 
Solver 

EFIT 

TGLF 
GLF23 
MMM 
CDBM 

NCLASS 

DCON 
GATO 

TORAY 

Framework/component architecture, using existing codes & file-based 
communication 

084-13/JMP/jy 

J.M. Park, APS 2013 

GENRAY 

•  Allows modeling of self-consistent plasma evolution 

•  Accelerates repeated cycle of modeling, experimental 
validation and scenario design/development  
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Experimental measurement of RF wave fields for 
full-wave model validation  
•  Optical emission spectroscopy (OES) used to measure     of RF 

waves by taking advantage of the dynamic Stark effect  
–  Spectral line profile is affected by RF electric field vector 
–  Schrodinger equation is fit to the spectral line profile to extract the RF 

electric field vector  

ERF 

Dβ spectral line profile 
obtained experimentally 

using OES 

i~@ 
@t

=
⇥
H +H

B +H
ERF (t)

⇤
 

<latexit sha1_base64="JKa4OyoYW4biHc90zPTzjqVtH5c="></latexit>

FIT 
Schrodinger 

equation 

Measurement of RF wave field 

TECHNIQUE SUCCESSFULLY IMPLEMENTED IN TORE 
SUPRA, C-MOD, AND WEST TO MEASURE LH 
WAVE FOR MODEL VALIDATION AND PHYSICS 

IDENTIFICATION  
Direct experimental measurement of LH wave 
scattering by turbulence in C-Mod (NF 59 (2019) 
076006) 

FULL-WAVE LH 
SIMULATION 

wave 
scattering 
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Initial RF system focuses on fundamental absorption 
with 8 GHz source frequency 

•  Four 8 GHz klystrons (Varian 
VKX-7879A)provide total of 
500 kW of power for 
experiments on Pegasus 
–  Previously used for LHCD on 

Frascati Torus  

–  Pulse length of 0.5 s 

•  UW-Madison developing 
high voltage power supplies 
–  Solid-state resonant amplifying 

power supplies provide low 
voltage ripple needed for 
klystrons  

8 GHz klystrons from FTU 

High voltage power 
supply designed/

built at UW-Madison 
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Design and testing of RF system components 
underway 

•  Power combiner network can 
couple all 4 klystrons 
–  Existing system has the phase and 

amplitude controlled drive hardware 
–  Low power testing has begun at ORNL 

•  Tallguide reduces power loss  

•  Small feed horn gives best focus at 
mode conversion layer  
–  Ellipsoidal reflector provides ~17 cm 

beam waist 

Combined single waveguide & launcher 
or 

4 separate waveguide systems? 

Loads	

~	WR-137	combiner	

From	FTU	??	

Single	
500	kW	
output	

•  Power	combiner	network	
can	couple	all	4	klystrons	

•  Single	vacuum	window	and	
launcher	is	quite	desirable	
•  (cost,	complication)	

•  Klystrons	must	be	phase	
and	amplitude	matched	

•  Similar	requirements	were	
needed	for	lower	hybrid	
”grille”	operation	on	FTU	

•  Existing	system	has	the	
phase	and	amplitude	
controlled	drive	hardware	

•  Reliable,	matched	
operation	from	all	4	
klystrons	needed	at	all	
times	for	maximum	
combining	efficiency	

hybrids	

8 GHz klystrons, 500 kW WR137 combiners 

Scaled model w/WR62 
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Flexible port access favorable to explore different 
antenna designs 

•  Flexibility in launcher 
design and access 
–  Compatible with HI 

systems 
–  Off-midplane launch 

allows current profile 
control 

•  Preliminary concept 
incorporates: 
–  Upper port for waveguide 

access 
–  Midplane port for 

ellipsoidal reflector 

Waveguide 
feed 

Ellipsoidal 
reflector 

GENRAY   
ray-tracing 
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PEGASUS-III operational space provides test bed 
for EBW heating/CD studies 

•  PEGASUS-III provides a unique opportunity to compare efficiency of a variety 
of ST startup techniques  

–  Collaboration with university project provides large amount of dedicated machine time to 
devote to target plasma development and focused EBW startup, heating/CD experiments  

–  Will investigate: helicity injection, ECH/EBW, CHI, etc.  

•  High-power EBW experiments led by ORNL in collaboration with UW-Madison 
and ENEA to be performed and compared with theoretical predictions  

–  Modeling shows EBW absorption at fundamental resonance possible for injection at 8 GHz with 
500 kW of power, providing heating and CD   

•  Developing a means to initiate and sustain ST plasmas without central 
induction will allow PEGASUS-III to perform the explorations of high-pressure, 
low-A plasmas which are inaccessible with Ohmic heating alone  

–  Future work includes exploration of ECH  
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Backup slides 
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Previous modeling shows EBW effective for a 
variety of plasma current profiles in PEGASUS 

•  Heating, CD peaked for near midplane 
launch at all ℓi values 
–  LHI yields typical ℓi of 0.2-0.45  
–  More extensive scan at appropriate TF, source 

frequency will be performed   

•  ℓi scan reveals sign of current is sensitive to 
profiles  

Pegasus Toroidal Experiment
University of Wisconsin-Madison

Heating is peaked for near midplane
launch at all li values
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• At lowest possible li, current still peaks near axis

•     scan reveals sign of current is sensitive to profiles

– A more extensive scan will be performed in the future

to investigate this sensitivity

li

Pegasus Toroidal Experiment
University of Wisconsin-Madison

   scan performed to check effectiveness

of EBWs for varying current profiles
•      =0.3, 0.5, and 0.6     the current profiles were

extremely different for each case

• Te and ne profiles constant, Ip=Itf=150 kA, κ~2,

β~20%, and Ro=40 cm
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Pegasus Toroidal Experiment
University of Wisconsin-Madison

Heating is peaked for near midplane
launch at all li values
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• At lowest possible li, current still peaks near axis

•     scan reveals sign of current is sensitive to profiles

– A more extensive scan will be performed in the future

to investigate this sensitivity

li

fsource = 2.45 GHz 

ITF=150 kA 
Te(0)=350 eV 
ne(0)=4x1019 m-3 

Te, ne, Ip, κ, β 
all constant 
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Initiating current without induction from central 
solenoid remains critical challenge facing STs  

•  Non-solenoidal startup remains a critical 
need for spherical tokamaks (ST), may 
benefit advanced tokamaks 

–  Nuclear ST designs generally prohibit OH due to 
shielding/cost  

–  Small solenoid considered as a fallback; 
insufficient for Ip ramp-up  

•  Requires physics understanding of 
optimal non-solenoidal tokamak startup  

–  Can be applied to future large-scale ST 

•  PEGASUS Toroidal Experiment at University 
of Wisconsin-Madison focused on non-
solenoidal plasma startup, ramp-up and 
sustainment 

ST-FNSF, FNSF / Pilot Plant Concepts 
Shielding needs severely constrain OH viability 

Solenoid-free 
Copper 
ST-FNSF 

No / small OH 
HTS 

ST-FNSF / Pilot Plant 

J.E. Menard et al., NF (2016) 
J.E. Menard, Phil. Trans. R. Soc. A (2019) 



24   Diem – 2019 ISTW 

Off-midplane launch allows for current 
profile control 

•  Increase in poloidal launch angle 
increases Doppler shift, radius of 
damping location  
–  Poloidal launch angle of 45° yields ~10 kA 

of driven current with 400 kW of injected 
power at ρ = 0.5 

–  Absorption region spreads at higher 
values of ρ

•  Flexibility of launcher may provide 
tool to study current profile control  
–  Varying plasma vertical height in PEGASUS 

UPGRADE may allow for small changes in 
poloidal launch angle 
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