

Heating and Current Drive of Overdense Plasmas in Spherical Tokamaks Utilizing Electron Bernstein Waves

S.J. Diem, T. Bigelow, C. Lau

in collaboration with colleagues from UW-Madison and ENEA

2019 ISTW – Frascati, Italy

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ORNL collaborating world-wide to help close science and technology gaps for low-A tokamaks

- U.S. community-driven, long term planning is considering a mid-sized, high power density tokamak that would enable development of a compact, fusion pilot-plant
- Can sustained, low-A H-mode scenarios move beyond carbon PFCs? Are alternative divertors required?
 - Assisting in NSTX-U PFC engineering for Recovery, exploring advanced radiative divertors in MAST-U and studying SOL heat flux width scaling to high field in ST40
 - Examining the effect of Li PFCs on core T_i , rotation in LTX- β
- Can the reliance on steady-state NBI be reduced?
 - Starting collaboration with ST40 on scoping use of ECH/EBW
 - Expect to resume HHFW participation on NSTX-U post-Recovery
- Can STs reduce the need for inductive startup?

CAK RIDGE

- Follow up experiment to PEGASUS at University of Wisconsin-Madison focused on non-inductive startup techniques
- Electron Bernstein waves (EBW) can be used to address non-solenoidal plasma startup, ramp-up and sustainment in overdense plasmas

• Update on PEGASUS-III EBW activities

- Follow up experiment to PEGASUS at University of Wisconsin-Madison focused on non-inductive startup techniques
- Electron Bernstein waves (EBW) can be used to address non-solenoidal plasma startup, ramp-up and sustainment in overdense plasmas

• Update on *PEGASUS-III* EBW activities

Elimination of solenoid greatly simplifies ST design but requires non inductive startup pathway

- DOE-Funded Mission: Solving 1 MA solenoid-free startup in NSTX-U
- Non-solenoidal startup and rampup techniques being studied both in US and internationally
- Collaboration will focus on EBW and ECH techniques

PEGASUS-III provides the US with a non-solenoidal startup development station

 PEGASUS-III: US Startup Development Station

 PEGASUS
 PEGASUS UPGRADE

12-turn TF Bundle

CAK RIDGE

Solenoid-free

Parameter	PEGASUS	Pegasus - Upgrade		
R _{sol} [cm]	4.9	N/A		
I _{sol} [kA]	24	0		
ψ_{sol} (mWb)	40	0		
N _{TF}	12	24		
$N_{TFT} X I_{TF}$	0.288 MA	1.15 MA		
$B_{\rm T,max}$ [T] at R_0 ~0.4 m	0.15	0.60		
А	1.15	1.22		
B _T Flattop [ms]	50	100		
TF Conductor Area [cm²]	13.2	151		
I _p Target [MA]	0.2	0.3		
Diem – 2019 ISTW				

- Follow up experiment to PEGASUS at University of Wisconsin-Madison focused on non-inductive startup techniques
- Electron Bernstein waves (EBW) can be used to address non-solenoidal plasma startup, ramp-up and sustainment in overdense plasmas

• Update on *PEGASUS-III* EBW activities

EBW heating/CD to be explored as component of fully non-inductive ST startup and sustainment

- EBW heating capability may synergistically enhance LHI induced Ip current by lowering resistivity
 - T_e increases compatibility with noninductive sustainment (i.e. NBCD)
 - Potential for direct RF startup
 - Initial concept: ~500 kW EBW RF, 8 GHz

R [m]

Collaboration between ORNL, ENEA, UW-Madison

Providing modeling, hardware expertise and experimental operations support

EBWs provide path to electron heating/current drive in overdense plasmas

- Low magnetic fields, high n_e of PEGASUS-III plasmas prohibit use of traditional ECH for many scenarios
 - Additional heating/current needed for non-solenoidal startup
 - EBW can couple to and propagate in overdense plasmas ($\omega_{pe} > \Omega_{ce}$)
- EBWs have been used successfully in STs and stellarators for heating & CD

Example of characteristic frequencies in PEGASUS UPGRADE with B_{T0} =0.346 T, $n_e(0) = 10^{19} \text{ m}^{-3}$

Overdense plasmas require alternative to EC heating methods

- EBWs are perpendicularly propagating, electrostatic, hot plasma waves
 - EBWs do not experience a density cutoff in the plasma
 - EBWs cannot propagate in vacuum → must launch O- or X-modes to mode couple to EBW
- EBWs absorbed near Doppler broadened resonance
 - Increase in n_{II} results in shift of resonance location: $\omega k_{II}v_{II} n\Omega = 0$
 - Observed for off-midplane launch in STs

Preliminary modeling to assess EBW feasibility with increase in *PEGASUS* toroidal field

- Projections suggest increase in toroidal field may result in higher $\rm T_e$ for LHI target plasmas for EBW modeling
 - Currently, $T_e(0) = 200 \text{ eV}$ in LHI discharges

CAK RIDGE

Equilibrium Parameters Shot 12366, 0.000 ms, Undo 234

I _p	297 kA	R_0	0.434 m
β _t	0.045	а	0.313 m
ℓ_{i}	0.41	А	1.38
β _p	0.37	κ	2.0
Ŵ	9089 J	δ	0.27
B_{T0}	0.339 T	q ₉₅	9.19

 $n_e(0)=1x10^{19} \text{ m}^{-3}$, $T_e(0)=400 \text{ eV}$

GENRAY/CQL3D modeling shows absorption, current drive near $\rho = 0.2$

- Source frequency of 8 GHz was used for preliminary modeling
 - Experimental target of ~400 kW injected into the plasma
 - B_{T0}=0.339 T, 2.5x current TF in Pegasus
 - Poloidal launch angle of 30° above midplane, $n_{\rm II}\text{=-}0.55$ to -0.45
- Absorption localized near fundamental EC resonance
 - ~30-40 kA of driven current with 400 kW of injected power

Modeling to provide optimization of EBW system

- GENRAY/CQL3D will calculate EBW propagation, absorption and driven current
 - OXB model in GENRAY includes analytic formula, providing a rough estimate of conversion efficiency, includes collisional damping calculations
 - CQL3D can simulate SXR signals
- IPS-FASTRAN framework to provide integrative modeling approach
- Finite-element COMSOL Multiphysics code will be used to model antenna and O-X coupling
 - Full-wave modeling with a cold plasma slab
 - Allows for direct comparison to measured electric field

CAK RIDGE

IPS-FASTRAN provides integrative modeling approach

- Allows modeling of self-consistent plasma evolution
- Accelerates repeated cycle of modeling, experimental validation and scenario design/development

Experimental measurement of RF wave fields for full-wave model validation

- Optical emission spectroscopy (OES) used to measure of RF waves by taking advantage of the **dynamic Stark effect**
 - Spectral line profile is affected by RF electric field vector
 - Schrodinger equation is fit to the spectral line profile to extract the RF electric field vector

- Follow up experiment to PEGASUS at University of Wisconsin-Madison focused on non-inductive startup techniques
- Electron Bernstein waves (EBW) can be used to address non-solenoidal plasma startup, ramp-up and sustainment in overdense plasmas

• Update on *PEGASUS-III* EBW activities

Initial RF system focuses on fundamental absorption with 8 GHz source frequency

- Four 8 GHz klystrons (Varian VKX-7879A)provide total of 500 kW of power for experiments on Pegasus
 - Previously used for LHCD on Frascati Torus
 - Pulse length of 0.5 s
- UW-Madison developing high voltage power supplies
 - Solid-state resonant amplifying power supplies provide low voltage ripple needed for klystrons

Design and testing of RF system components underway

- Power combiner network can couple all 4 klystrons
 - Existing system has the phase and amplitude controlled drive hardware
 - Low power testing has begun at ORNL
- Tallguide reduces power loss
- Small feed horn gives best focus at mode conversion layer
 - Ellipsoidal reflector provides ~17 cm beam waist

Scaled model w/WR62

Flexible port access favorable to explore different antenna designs

- Flexibility in launcher design and access
 - Compatible with HI systems
 - Off-midplane launch allows current profile control
- Preliminary concept incorporates:
 - Upper port for waveguide access
 - Midplane port for ellipsoidal reflector

CAK RIDGE

PEGASUS-III operational space provides test bed for EBW heating/CD studies

- *PEGASUS-III* provides a unique opportunity to compare efficiency of a variety of ST startup techniques
 - Collaboration with university project provides large amount of dedicated machine time to devote to target plasma development and focused EBW startup, heating/CD experiments
 - Will investigate: helicity injection, ECH/EBW, CHI, etc.
- High-power EBW experiments led by ORNL in collaboration with UW-Madison and ENEA to be performed and compared with theoretical predictions
 - Modeling shows EBW absorption at fundamental resonance possible for injection at 8 GHz with 500 kW of power, providing heating and CD
- Developing a means to initiate and sustain ST plasmas without central induction will allow *PEGASUS-III* to perform the explorations of high-pressure, low-A plasmas which are inaccessible with Ohmic heating alone
 - Future work includes exploration of ECH

Backup slides

Previous modeling shows EBW effective for a variety of plasma current profiles in *PEGASUS*

- Heating, CD peaked for near midplane launch at all ℓ_i values
 - LHI yields typical ℓ_i of 0.2-0.45
 - More extensive scan at appropriate TF, source frequency will be performed
- ℓ_i scan reveals sign of current is sensitive to profiles

- Non-solenoidal startup remains a critical need for spherical tokamaks (ST), may benefit advanced tokamaks
 - Nuclear ST designs generally prohibit OH due to shielding/cost
 - Small solenoid considered as a fallback; insufficient for I_p ramp-up
- Requires physics understanding of optimal non-solenoidal tokamak startup
 - Can be applied to future large-scale ST
- *PEGASUS* Toroidal Experiment at University of Wisconsin-Madison focused on nonsolenoidal plasma startup, ramp-up and sustainment

ST-FNSF, FNSF / Pilot Plant Concepts Shielding needs severely constrain OH viability

Solenoid-free Copper ST-FNSF

No / small OH HTS ST-FNSF / Pilot Plant

J.E. Menard et al., NF (2016) J.E. Menard, Phil. Trans. R. Soc. A (2019)

Off-midplane launch allows for current profile control

- Increase in poloidal launch angle increases Doppler shift, radius of damping location
 - Poloidal launch angle of 45° yields ~10 kA of driven current with 400 kW of injected power at $\rho = 0.5$
 - Absorption region spreads at higher values of ρ
- Flexibility of launcher may provide tool to study current profile control
- Varying plasma vertical height in PEGASUS UPGRADE may allow for small changes in poloidal launch angle CAK RIDGE

