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INTERNATIONAL 

THERMONUCLEAR 
EXPERIMENTAL 

REACTOR 

SITO: 

Cadarache (Francia) 
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Magnetic confinement fusion: the tokamak concept 
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Magnetic confinement fusion: the tokamak concept 

TF (Torodial Field): 12T-68kA – steady state 

CS (Central Solenoid): 13T-46kA – transient 

PF (Poloidal Field): 6.4T-52kA – transient 
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• if a zone of length l is heated up until 

transition, it dissipates (Joule effect) 

• if the heat is removed more rapidly than its 

generation, the zone will reduce – otherwise, 

will increase 

• The transition between the two cases defines 

the Minimum Propagation Zone  (MPZ) 

In adiabatic conditions (approximation), the generated heat is equal to that removed: 

2kA(Tc-Top)/l = Jc
2ρAl 

Tc 
Top 

J 

l 

A 
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To stabilize the conductor, we need to increase the MPZ, thus  l . 

2kA(Tc-Top)/l = Jc
2ρAl 

• increase thermal conductivity, κ 

• decrease the electrical resistivity, ρ 
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To stabilize the conductor, we need to increase the MPZ, thus  l  

BUT the superconductor is not ideal 

Resistivity Thermal conductivity 

2kA(Tc-Top)/l = Jc
2ρAl 

• increase thermal conductivity, κ 

• decrease the electrical resistivity, ρ 
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It’s thus necessary to couple 
(stabilize) the material for example 
with Copper or Aluminum 

2kA(Tc-Top)/l = Jc
2ρAl 

• increase thermal conductivity, κ 

• decrease the electrical resistivity, ρ 

Superconductor Cu 

α = Cu/nonCu ratio 

To stabilize the conductor, we need to increase the MPZ, thus  l  
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Practical SC are all type-II materials. If I > Ic the 
fluxons move under the effect of the Lorentz 
force, and generate dissipation. 

current 

E 
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Practical SC are all type-II materials. If I > Ic the 
fluxons move under the effect of the Lorentz 
force, and generate dissipation. 

Below Ic: pinning of fluxons  hysteretic 
behavior under varying magnetic field. 
 
Currents and field profiles inside a s.c. slab 
described by BEAN (Critical State) model. 

Bean model 
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Practical SC are all type-II materials. If I > Ic the 
fluxons move under the effect of the Lorentz 
force, and generate dissipation. 

Below Ic: pinning of fluxons  hysteretic 
behavior under varying magnetic field. 
 
Currents and field profiles inside a s.c. slab 
described by BEAN (Critical State) model. 

Bean model 

Any instability, of both electrical and thermal 
nature, might drive a “depinning” of a flux 
quantum (flux jumping). The phenomenon 
might even induce a quench of the magnet. 

Flux Jumping 
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Flux Jumping as observed 

 Less stable at low fields, where 
Jc is higher 

 The instability is worse at lower 
T because Jc increases and C 
decreases 
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The adiabatic stability condition to prevent 
flux jumping: 

Where γ e Cs are the density and the specific heat of the material; Tc e Jc its critical 
temperature and current; a the diameter of the conducting element 

A reduction of the diameter of the s.c. filaments is necessary 



Multi-filamentary superconducting wires 

26 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

Superconductor Copper 

The superconduct. wire is 
formed of many thin filaments 

of s.c. materials, within a Cu 
stabilizing matrix 

Wire diameter 0.5÷1 mm 

# supecond. filaments 1000÷1000
0 

Filament diameter 5÷50 µm 

Cu/non Cu 4/1 ÷ 1/1 

Wire 

Filament 

Bundle 

Photo courtesy of Peter Lee, FSU 

Photo courtesy of J. Minervini MIT 

Φ = 0.81 mm 

Φ ∼ 50-100 µm 

Φ ∼ few µm 
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In the presence of varying field: 
 
Type-II superconductors present a magnetic hysteresis due 
to the pinning of fluxons. 

Hysteresis losses: 
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In the presence of varying field: 
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“Twisting” of 
superconducting filaments 

is necessary 

In the presence of varying field: 
 
time variation of the magnetic flux generates screening currents in 
the wire, which tend to oppose to the field variations. 

Coupling losses: 
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Superconducting wires (strands): 
 
- thin s.c. filaments (multi-filamentary); 
-s.c. filaments within a Cu matrix; 
- twisted filament structure. 
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NbTi 



Fabrication of s.c. wires 

33 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

Nb3Sn 

Courtesy of: 
A. Godeke, Performance 

Boundaries in Nb3Sn 
Superconductors (2005) 

It requires a heat treament at 650 °C to form the s.c. 
phase. 

Once formed, it is a brittle material! 
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NbTi 

Nb3Sn 

Tc(B=0) Bc2(T=0) 

NbTi 
(type II) 

9.2 K 15 T Ductile alloy – bcc structure 
- cheap 

Nb3Sn 
(type II) 

18 K 27 T 
Intermetallic compound – 
brittle – A15 structure – 
expensive  
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NbTi 

Nb3Sn 

Bpeak determines the choice of the s.c. material to be used 

ITER TF 

ITER PF 



Outline 

36 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

 Introduction on the Magnet system of a tokamak reactor 

 Multi-filamentary superconducting strands 

 Cable-in-Conduit conductors (CICCs) 

 Manufacturing aspects of CICCs 

 Manufacturing aspects of ITER coils 

 ENEA activities beyond ITER 



Superconducting cables 

37 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

How should a certain number of s.c. wires be assembled into a 
cabled structure, that constitutes the conductor, by which fusion 
coils are wound? 
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Typically: T ~ 4.5K, P ~ 6 ÷10 bar 

Steel 
jacket 

Empty fraction for forced He 
circulation 

1000 ÷ 5000 
filaments 

strand 

Pressure relief channel 

Strand bundle 

Convective heat transfer: 

BUT: Low JENG 

- Effective cooling 
- Mechanically strong 
- Flexible layout 
- Effective electrical 

insulation 

Hoenig; Montgomery; Iwasa (1975): 
high cooling efficiency of single phase (supercritical) He in turbulent flow 
and in direct contact with a large wetted surface 
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A high pressure He flow is used, which guarantees a better 

heat exchange and a rapid heat  diffusion. 

 

Above 2.26 bar, Helium is supercritical, i.e. it exists in the 

form of a single-phase fluid, with high density. This prevents 

local evaporation and the formation of the vapour film that 

limits heat exchange. 

It is the solution adopted in most of the superconducting 

tokamaks, as well as in ITER. 

 

Typically: T ~ 4.5K, P ~ 6 ÷10 bar 

In Fusion magnets: 
Cooling by forced circulation of supercritical helium (P > Pcr= 2.26 bar): 
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Source of losses: 
• Hysteresis 
• AC 
• Coupling 
• Eddy- 
• Neutrons 
• Thermal radiation & Conduction 

ITER design experience: 

Due to varying field 
and currents 

Specific of CS conductors 

Specific of TF conductors 
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 JET interior of vacuum vessel 
no  plasma                    with plasma  
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Nuclear Heat load FAST TF (2011) 
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Nijhuis_IEEE TAS 13 

Example of measured losses in the ITER CS CICCs 

Which can be approximated by: 

Coupling time constant: 

Penetration parameter: 

Penetration field: 

Hysteresis are the extrapolated value to zero 
frequency (present plot is normalized!) Coupling time constant (nτ) is obtained form 

the linear fit of the low-frequency range. 
Multiple time constants (nτ1 , 
nτ2 , nτ3 , …) would be more 
appropriate for CICCs. 
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TF CICC: 68 kA @ 11.8 T 
Φ = 43.7 mm 

CS CICC: 46 kA @ 13 T; L = 49 

mm 

PF CICC: 
52 kA  @  6.4 T 
L = 53.8   mm 



… or other prototypes 
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56 m
m

 

32 mm 26 m
m

 
22 mm 

JT-60SA TF 

TF CICC: 68 kA @ 11.8 T 
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CICC qualification tests: Tcs 

Typical Current Sharing Temperature (Tcs) test 

SULTAN facility at the: 

Breschi_SUST 2012 



49 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

CICC qualification tests: Tcs 

Typical Current Sharing Temperature (Tcs) test 

SULTAN facility at the: 

Breschi_SUST 2012 

Repeated after e.m. loading cycles + Warm-up-Cooldown (WUCD) cycles 
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ITER TF: Tcs measurements with cycles 
SULTAN facility at the: 

M.  Breschi 
– A. Devred 

http://www.iter.org/a/home.htm?v=03
http://fusionforenergy.europa.eu/
http://www.jaea.go.jp/english/index.shtml
http://www.iterkorea.org/
http://www.iterrf.ru/
http://www.usiter.org/
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 1. cabling (strands; spiral; steel wrapping) 

  2. jacket assembly 

   3. Cable insertion (by pull-through) 

    4. Conductor compaction 

     5.  Conductor spooling 

       6. Final acceptance tests 

         7. Shipment to magnet 

supplier 
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TRATOS Production line for ITER cables 
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Final Cable compaction system 
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A straight tube length of 760 m has to be obtained by butt-welding 
(Jacket Assembly): 

CRIOTEC Jacketing Line 



Manufacturing of ITER Conductors 

58 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

 1. cabling (strands; spiral; steel wrapping) 

  2. jacket assembly 

   3. Cable insertion (by pull-through) 

    4. Conductor compaction 

     5.  Conductor spooling 

       6. Final acceptance tests 

         7. Shipment to magnet 

supplier 



Manufacturing of ITER Conductors 

59 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

Front view Rear view 
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After compaction Before compaction 
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1. Dye penetrant test of each weld 

on spooled conductor; 

2. Mass flow test of conductor unit 

length with gas N2; 

3. He leak test in vacuum chamber. 
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Summary on the fabrication of CICCs 
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ICAS Work Organization 
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Magnete toroidale  

9 m 

(360 tons) 
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Magnete toroidale  

9 m 

Cable in Conduit 
Conductor: 1422 fili  
(900 sup. + 522 Cu) 

44 mm 

(360 tons) 
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Magnete toroidale  

9 m 

Cable in Conduit 
Conductor: 1422 fili  
(900 sup. + 522 Cu) 

44 mm 

0.82 mm un filo è 
costituito da 
~3000 
filamenti (360 tons) 
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Conductor is wound in Double-Pancakes 
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Step 1: winding 

Conductor is wound in Double-Pancakes 
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Large furnaces required for curing Nb3Sn for about 3 
weeks, in temperature steps up to 650 °C +/- 5 °C 



Step 3: CICC insertion in radial plates 
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ITER TF Radial Plate 



Step 4: conductor insulation 
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Step 5: Double Pancake impregnation 
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Step 6: stacking of DPs 
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Step 7: insulation of coil pack 
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ASG, on TF coil manufacture (4.19 min): 
https://www.youtube.com/watch?v=4xTedApXHNA 
 
 
CNIM, on radial plates manufacture (7.23 min): 
https://www.youtube.com/watch?v=w_b53lhHJ54 
 
 
SIMIC, on radial plates manufacture (5.13 min): 
https://www.youtube.com/watch?v=5OmkaaVazJ4 
 

http://youtu.be/W7dvr1TkvSw


Outline 

85 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

 Introduction on the Magnet system of a tokamak reactor 

 Multi-filamentary superconducting strands 

 Cable-in-Conduit conductors (CICCs) 

 Manufacturing aspects of CICCs 

 Manufacturing aspects of ITER coils 

 ENEA activities beyond ITER 



From ITER to (EU)-DEMO 

86 L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 

 DEMO: 500 MW electric power, and supply to the grid; 

 European Roadmap: demonstrate fusion electricity by 2050 

 since 2011 R&D activities in EU on the 
superconducting magnet system of 
DEMO. Coordinated by EUROfusion. 

DEMO CAD model (30 April 2014) 
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Divertor Tokamak Test facility: 
the general objective of the DTT project is 
to design an experiment addressed to the 
solution of the power exhaust issues in 
view of DEMO 
 
it must provide enough positive evidence 
that the alternative solutions could be 
integrated in a DEMO device in case the 
conventional divertor solution does not 
yield the necessary capabilities for power 
exhaust 

To be built here in Frascati! 



The Italian DTT project 
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X-Divertor  
4.5MA 

Super-X  
3MA 

Single Null  
5.5MA  

Double Null  
5.5MA 
 
 

Snowflake 
4.5MA 

Magnet system flexibility for plasma shaping 
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Magnet Design is: 
o performed in order to have a flexible and 

fully symmetric tokamak 

o committed to a tight, but realistic, time 
schedule and cost containment 

o based to the state-of-art magnet 
technology choices  (or close to), in 
order to reduce at minimum the R&D 
phase 



The Italian DTT project 
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18 TF coils: 
Nb3Sn Cable-In-Conduit Conductors 
6 Double-Pancakes (4 regular + 2 side) 
Bmax = 11.7 T; Iop = 26.9 kA 
ΔTmargin > 1.6 K 

6 CS module coils 
Nb3Sn Cable-In-Conduit Conductors 
graded (3 sections) Layer Wound 
Bmax = 14 T, 12 T, 8.2 T; Iop = 28 kA 
ΔTmargin > 1 K 

6 PF coils 
NbTi Cable-In-Conduit Conductors 
Double-Pancakes winding 
Bmax = 2.5 – 6.0 T; Iop-max = 11 - 29 kA 
ΔTmargin > 1.7  K  in all coils 



The Italian DTT project 
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3D FEM  
ANSYS, cooldown + energization (Out of Plane forces included) 

Detailed models for 
IIS, OIS and gravity 

supports analyses are 
being developed 



The Italian DTT project 
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3D FEM (ANSYS, cooldown + energization) 
  Von Mises stress in Steel and Insulation Shear within acceptance criteria 

Complete system of 6 modules modelled with ANSYS 
Self-field and SN scenario: max VonMises stress < 667MPa 
Fatigue analysis and structures analysis are ongoing 

SN (t= 0s) 



The Italian DTT project 
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Around PF1/6 the area is 
quite “crowded” 

The full set of Inner-Intercoil Structures (pre-compression rings, shear keys, 
Outer-Intercoil Structures and gravity supports) is under detailed study 



Luigi Muzzi 
luigi.muzzi@enea.it 

L. Muzzi - Seminario Studenti Roma TRE - 10 Dic. 2018 
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