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• Ion Cyclotron Resonance Heating (ICRH)

• Lower Hybrid & Current Drive (LHCD) 

• Electron cyclotron resonance heating (ECRH)
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ICRH antenna with high impedance surface
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• Basics of 
antenna 
theory:

λ/4

PEC

impossible in 
tokamaks if λ ≈ 5 m, 

need of a high 
impedance surface 

(HIS), i.e. of a perfect 
magnetic conductor
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High-Impedance Electromagnetic Surfaces with a
Forbidden Frequency Band

Dan Sievenpiper, Member, IEEE, Lijun Zhang, Romulo F. Jimenez Broas, Nicholas G. Alexópolous, Fellow, IEEE,
and Eli Yablonovitch, Fellow, IEEE

Abstract— A new type of metallic electromagnetic structure
has been developed that is characterized by having high sur-
face impedance. Although it is made of continuous metal, and
conducts dc currents, it does not conduct ac currents within a
forbidden frequency band. Unlike normal conductors, this new
surface does not support propagating surface waves, and its
image currents are not phase reversed. The geometry is analogous
to a corrugated metal surface in which the corrugations have
been folded up into lumped-circuit elements, and distributed in
a two-dimensional lattice. The surface can be described using
solid-state band theory concepts, even though the periodicity is
much less than the free-space wavelength. This unique material
is applicable to a variety of electromagnetic problems, including
new kinds of low-profile antennas.

Index Terms— Antennas, corrugated surfaces, photonic
bandgap, surface impedance, surface waves, textured surfaces.

I. INTRODUCTION

A. Electric Conductors

AFLAT METAL sheet is used in many antennas as a
reflector or ground plane [1]. The presence of a ground

plane redirects one-half of the radiation into the opposite
direction, improving the antenna gain by 3 dB, and partially
shielding objects on the other side. If the antenna is too close to
the conductive surface, the image currents cancel the currents
in the antenna, resulting in poor radiation efficiency. This
problem is often addressed by including a quarter-wavelength
space between the radiating element and the ground plane, but
such a structure then requires a minimum thickness of .
Another property of metals is that they support surface

waves [2], [3]. These are propagating electromagnetic waves
that are bound to the interface between metal and free space.
They are called surface plasmons at optical frequencies [4],
but at microwave frequencies, they are nothing more than the
normal currents that occur on any electric conductor. If the
metal surface is smooth and flat, the surface waves will not
couple to external plane waves. However, they will radiate
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Fig. 1. (a) Cross section of a high-impedance surface, fabricated as a printed
circuit board. The structure consists of a lattice of metal plates, connected
to a solid metal sheet by vertical conducting vias. (b) Top view of the
high-impedance surface, showing a triangular lattice of hexagonal metal plates.

vertically if scattered by bends, discontinuities, or surface
texture.
Surface waves appear in many situations involving antennas.

On a finite ground plane, surface waves propagate until they
reach an edge or corner, where they can radiate into free space.
The result is a kind of multipath interference or “speckle,”
which can be seen as ripples in the radiation pattern. Moreover,
if multiple antennas share the same ground plane, surface
currents can cause unwanted mutual coupling.

B. High-Impedance Surfaces
By incorporating a special texture on a conducting surface,

it is possible to alter its radio-frequency electromagnetic
properties [5], [6]. In the limit where the period of the surface
texture is much smaller than the wavelength, the structure
can be described using an effective medium model, and its
qualities can be summarized into a single parameter: the
surface impedance. A smooth conducting sheet has low surface
impedance, but with a specially designed geometry, a textured
surface can have high surface impedance.
An example of a high-impedance surface, shown in Fig. 1,

consists of an array of metal protrusions on a flat metal sheet.
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B. High-Impedance Surfaces
By incorporating a special texture on a conducting surface,

it is possible to alter its radio-frequency electromagnetic
properties [5], [6]. In the limit where the period of the surface
texture is much smaller than the wavelength, the structure
can be described using an effective medium model, and its
qualities can be summarized into a single parameter: the
surface impedance. A smooth conducting sheet has low surface
impedance, but with a specially designed geometry, a textured
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HIS antenna in collaboration with Polito and ASIPP
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• EAST 
mockup:

31.346MHzrounding
radius=3cm

a
lu

m
in

a

tuning of 
resonance
frequency

• Low power tests (Sept. 2018):

-27dB @30MHz 
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High power tests
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• High power tests (Nov. 2018):
15 kW 30 kW

<5 kW >5 kW >30 kW
white = forward power

red = reflected power

visible fast 
camera 
looking at 
antenna front

47.6 cm

77
 c

m

ASIPP

Progress of mock up manufactory

16
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Traces of electrical arcing
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• Predicted E-fields are indeed high
(> 5x ITER limit)

But also testing conditions were not optimal
(no baking, cleaning of vacuum chamber, …)
and arcing position suggests the presence
of volume with trapped air at contact surfaces
of alumina parts.

External collaborations on RF topics, WIP, 07/02/2022



Design improvements
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• Two antennas have been manufactured and tested respectively in May 2019 and Nov. 2019 with 
the following improvements:
o baking of vacuum chamber and antennas:
o better vacuum pumping (in coaxial feeders

and on the rear part of the antenna;

o single alumina block instead of three;
o one traditional and one HIS strap on the same

antenna to compare their behaviour;
o thinner metal cap of the high impedance surface, made by copper coating in the second antenna 

improvement:

HIS of May 2019 HIS of Nov. 2019

External collaborations on RF topics, WIP, 07/02/2022



Last tests
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• Traditional strap with matching
network works as expected:

Best shot: 39.775 MHz,
35 kW, 100 ms.
with no sparking and
almost zero reflection
at generators.
After increasing the
pulse length to 200 ms, arcing occurred again with 
no chance to have good performance again => 
damages

40kW @39.74MHz, 500ms pulse length

forward 
power

reflected 
power

• HIS strap still 
presented 
arcing:

• No further progress on this topic.
• Polito proposed a HIS antenna without alumina for DTT

External collaborations on RF topics, WIP, 07/02/2022



Design of oversized microwave components
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RF design
Fabrication of Corrugated Bend + 

2 convertors

Providing Testbed 
(excluding cost of klystron 

operation)
< 1k€ 50k€ (Al) or 60k€ (ETP Cu) 15 k€
ENEA IPR CEA

corrugated bend in circular 
waveguide for the TE01 mode

mode converter from TE10 mode in 
rectangular waveguide to TE01 

mode in circular waveguide

designed by S. Ceccuzzi designed by G.L. Ravera

External collaborations on RF topics, WIP, 07/02/2022



Progress of collaboration activities
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• scaled mockup from 5 GHz (ITER frequency) to 3.7 GHz to allow high-power test
• long collaboration due to slow progress of IPR activities:

o June 2015: the specific topic of cooperation (STC) IPR-ENEA is signed;
o June 2015: ENEA sends the CAD files of the components (RF design) to IPR;
o January 2016: final executive mechanical designs are approved;
o August 2016: IPR places the order for the components, expected delivery within 9 months;
o October 2017: order is cancelled because the manufacturer cannot satisfied required tolerances;
o October 2018: a new order has been issued with expected delivery within 8 months;
o October 2020: the components are delivered to IPR and low power tests are carried out.
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Low-power tests
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• Transmission efficiency @3.7 GHz
• simulated: 99%,
• measured: 90%

• Reflection coefficient @3.7 GHz
• simulated: -38 dB,
• measured: -22 dB

From: Pramod K Sharma pramod@ipr.res.in
Subject: VNA results of oversized corrugated bend

Date: 10 August 2020 at 07:55
To: GONICHE Marc 100063 Marc.GONICHE@cea.fr, Silvio Ceccuzzi silvio.ceccuzzi@enea.it
Cc: kiran kiran@ipr.res.in, prparmar prparmar@ipr.res.in

Dear Marc and Silvio,
I am happy to inform you that the corrugated bend and convertor are fabricated
and delivered.
We have successfully tested it for mechanical tests (pressurization leak test and
cooling leak test).
The VNA measurments shows good results (S11 ~ -22dB and S12 ~ 0.5 dB) and
the plot is attached for your kind reference. Could you please compare it with your
simulation results and comment on the obtained results.
It would be nice if Silvio can share the simulation data results (S11 & S12) so that
these measurements may be plotted in the same file for easy comparison.
With best regards,

Dr. Promod Kumar Sharma,
Scientific Officer - G,
Head, Lower Hybrid Current Drive (LHCD) Division,
Associate Professor, HBNI,
Institute for Plasma Research,
(Autonomous Institute of D.A.E. Govt. of India),
Gandhinagar - 382428, Gujarat, India
Ph: +91-79-2396 2032 (direct), 23960000 (board)
Fax: +91-79-2396 2277, Email: pramod@ipr.res.in

simulated
measured

Satisfactory results considering the mechanical design 
(segmentation and tolerances of CNC in India).

External collaborations on RF topics, WIP, 07/02/2022



High-power tests – Sept. 2021
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• Due to pandemic situation, high-power tests are carried out in India:

klystron directional 
coupler

arc 
detector

device under test
(converter + bend + converter)

directional 
coupler load

measurement accuracy = +/- 10%, no arc detected, interlock due to high reflection, then disabled.
ENEA suggested to check visual deformation on the components, swap directional coupler and/or repeat low-power measurements.

4) RF pulse of 5000 msec (5sec) for approx. 100kW rf power: 

 

Figure 7: Forward Power graph measured using directional coupler 

Observation: The forward power before converter-bend assembly and the forward power after converter-
bend assembly shows no variation during the rf pulse. The measurement accuracy is +/- 10% due to the 
detector. 

 

 

Figure 8: Reflected Power graph measured using directional coupler 

Observation: The reflected power before converter-bend assembly is high and the reflected power after 
converter-bend assembly is low. 
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4) RF pulse of 5000 msec (5sec) for approx. 100kW rf power: 

 

Figure 7: Forward Power graph measured using directional coupler 

Observation: The forward power before converter-bend assembly and the forward power after converter-
bend assembly shows no variation during the rf pulse. The measurement accuracy is +/- 10% due to the 
detector. 
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Observation: The reflected power before converter-bend assembly is high and the reflected power after 
converter-bend assembly is low. 
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4) RF pulse of 5000 msec (5sec) for approx. 100kW rf power: 

 

Figure 7: Forward Power graph measured using directional coupler 

Observation: The forward power before converter-bend assembly and the forward power after converter-
bend assembly shows no variation during the rf pulse. The measurement accuracy is +/- 10% due to the 
detector. 
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Observation: The reflected power before converter-bend assembly is high and the reflected power after 
converter-bend assembly is low. 
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Collaboration ENEA-CEA-DTT
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• Collaboration agreed on October 26, 2021,
on several topics:

• The topic on heating systems regards ion-cyclotron resonance heating (ICRH) and electron 
cyclotron resonance heating (ECRH)

Topics
Contact persons

CEA ENEA-DTT
Collaboration coordination G. Giruzzi M.Ciotti - F. Crisanti
WEST experiments E. Tsitrone F. Bombarda
WEST operation: plasma control Ph. Moreau L. Boncagni
WEST operation: heating systems J.M. Bernard S. Ceccuzzi
Divertor technologies for DTT M. Missirlian S. Roccella
PFCs instrumentation and monitoring for DTT M. Houry M. Iafrati
Physics programme G. Giruzzi F. Crisanti
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Collaboration ENEA-CEA-DTT on ICRH
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• ICRH is a topic with high priority; two groups of collaboration subjects have been identified:

clear interest => quantitative proposal for resource

Topics matching DTT and CEA interests, i.e.
§ training of ENEA staff in control room and plant 

activities + diagnostics, protections, experiments.
§ CEA participation to the expertise and 

milestones of the DTT ICRH system.

potential interest => qualitative list of topics

Activities for which a binding commitment is 
premature at this stage due to uncertainties on DTT 
needs and difficult quantification of the resources 
needed for their execution. Detailed provisions to 
be deeply assessed and agreed in due time:
§ Use of TITAN facility to test antenna prototypes 

and/or RF contacts,
§ Direct involvement of CEA in the procurement 

of diagnostics, in particular
§ arc detection systems like SHAD, optical 

techniques, (IR cameras);
§ voltage probes & phase measurements.

ENEA-DTT CEA/IRFM
Year @home @WEST @home @DTT
2021 1 0.5
2022 2 2.5 1
2023 1.5 2 1
2024 1 1.5 0.5 1
2025 1 1 0.5 1
2026 1 1.5 0.5 1
2027 1 1.5 0.5
2028 1.5 2 0.5 2
Total 10 12 5 5
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m
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Collaboration ENEA-CEA-DTT on ECRH
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ECRH-relevant subjects may be included at some point during the collaboration (WEST ECRH system 
to be deployed from 2023): 

• Participation of ENEA-DTT staff to
o gyrotron and ECRH plant commissioning,
o antenna commissioning,
o ECRH system commissioning and ECRH first experiments.

• Participation of CEA/IRFM staff to
o design of elements of the TL and launchers, 
o ex-vessel and/or in-vessel diagnostics,
o ECRH control system design and development.
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Design of DEMO ECRH antenna
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Task in collaboration with ISTP-CNR, part of the WP HCD

General description
• The system is located in the equatorial port and consists of 

four modules:
o Two modules, each dedicate to 3 beams, on the 

upper and lower region of the port for NTM 
stabilization (170 or 204 GHz);

o Two modules, each dedicated to 8 beams, in the 
central region for plasma heating (170 or 204 GHz) 
and power deposition at the pedestal for the 
stabilization of thermal instabilities (136 or 170 GHz).

• Each module includes a pair of mirrors, the first fixed and flat, 
the second focusing and, for NTM only, steerable in the 
poloidal direction.
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Design of DEMO ECRH antenna
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Tools developed for the task (used also for DTT antennas)
• Parametric CATIA model (e.g., optical parameters of the 

beams, geometrical data for mirrors) with publication 
between different parts à easing the update of the model;

• Matlab code for QO design and generation of thermal load 
maps.

Objectives of the task
• Definition of position, orientation, optical surface, size and contour of the 

mirrors after optimization process by physics (i.e., identify the best launching 
direction depending on the task).

• Definition of waveguides direction inside the port;
• Evaluation of the microwave thermal load distribution on mirrors needed  

for the design of the cooling system.
• Definition of the minimum size of the breeding blanket cut-out needed for 

the passage of the microwave beams.

External collaborations on RF topics, WIP, 07/02/2022



Calorimetric loads for the commissioning of gyrotrons
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Objective of the task
• Participation to call for tender for the procurement 

of high power, high frequency calorimetric loads 
for the commissioning of gyrotrons.

• A design phase is required to demonstrate the 
compliance with the requirements provided by the 
Contractor.

Task in collaboration with ISTP-CNR

Tools developed for the task
Ray-tracing Matlab code based on geometrical optics. The input data of the code are:
• Input Gaussian beam, modelled as ideal beam (part of the code) or using the field 

calculated with the commercial code GRASP (provided by ISTP-CNR);
• Profile of the spreading mirror, designed to have a well-defined primary illumination inside the 

loads (provided by ISTP-CNR);
• Absorbing coating thickness profile (provided by ISTP-CNR).



Calorimetric loads for the commissioning of gyrotrons

19

• The beam is discretized in a bundle of many rays, each with its direction and carried power.
• The geometry of the loads and its components (preload and mirror) is implemented in the 

code using analytical formulation (with minor approx.).
• At each bounce, the incidence point and incidence angle are calculated.
• The fraction of power absorbed is calculated considering the local thickness of the coating, 

the incidence angle and the polarization of the ray à local absorption coefficient.
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• The propagation continues until:
o the power content of the ray decrease 

below a value set to stop the simulation 
(e.g. 50 mW);

o the ray escapes back into the waveguide 
(provide fraction of back-reflection, 
usually ~0.5% of the total power).

• The code can be used with different geometries, 
absorbing materials and with a different input 
beam mode mix (input from GRASP required).
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Example of absorbed power density distribution on the 
absorbing portion of the spherical load in the nominal 

case of input HE11 mode.



Thank you for the attention
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