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Generalized Bessel Functions and their Use in
Bremsstrahlung and Multi-Photon Processes

Free Electron Laser high gain equation and harmonic
generation

Fractional Derivatives, Memory kernels and solution of Free
Electron Laser Volterra type equation

Operator Theory, Special Functions, Fractional Calculus,
Generating Function, Integral Transforms,
Integro-Differential Equation...

Further examples as Time fractional Schroedinger-like

equation, Pearcey Integral in Optics, Plasma perturbations,

etc =} F = E E 9ac
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Lienard-Wiechert LW integral spectral properties of the emitted radiation

dw 90 —oo

227 . ’/+<x> [ﬁ X (7 5)] = [iw(t— ﬁTF)] & 2

)

(1)

d2
ﬁ§=|a|cos(g+¢),

T=—
L

d
—a=—j(e

dr

, j=2ngo, a=|ale?®,

=%,

dC
v=—
dr

Pendulum equatio

(2)

Radiation growth - Volterra Integro Differential Equation

g T s —ivT =
Or a =1 mgo T'e
0]

a(0) =1

(mpe "'/)2
2

a(r —7') dr’

(3)
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Lienard-Wiechert LW integral — spectral properties of the emitted
radiation

o o ‘/_4-00 [ﬁx (7 x ﬁ)] exp [iw(t— g)] dt

Ow 00

I'is the intensity, w frequency,  solid angle, i observation unit
vector, T, ﬂ = r/c trajectory the velocity vector coordinates of the

eIectrons 12 o
exp [iw (t—%)] (5)

1G. Dattoli, E. Di Palma, S. Licciardi, E. Sabia, Generalized Bessel
Functions and Their Use in Bremsstrahlung and Multi-Photon Processes,
MDPI, Symmetry, 13, 159, 2021.

2Dattoli, G.; Renieri, A.; Torre, A. Lectures on Free Electron Laser and

related Topics, 1st ed.;World Scientific: Singapore, 1990. - = = 9ac
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Since the electron motion assumed to be ultra-relativistic, the
radiation is emitted mostly in the forward direction and therefore 6 is
of the order of % (where v >> 1 is the electron relativistic factor).
Hence the vector 77 can be approximated as

(sin(#) cos(¢), sin(f) sin(¢), cos(d)) ~ (19 cos(¢), Isin(¢),1— %192>

FIgU I'€. Permanent magnet block arrangement in undulators (the arrow denotes the direction of
the magnetization vector), on axis field distribution and electron beam trajectory.
& =
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Electrons equation of motion can be easily solved and at the lowest
order in 1/, thus getting3

c K 9?2 - K% ¢
A7~ —— —Ycos(p)sin(wyt)+|1—— ) B ct— —— — sin(2wyt), (7)
Wy Y 2 872 wy,

) 27 . 1 K2 eB )y
with w, = , B*~1— —[1+4+ , K= ———

27 me?’

1R

)

»

o

~.

€
A

—

+
A

—_

|
w|¢§,

) ﬁ*) t} exp [iw (A sin(wyt)+Bsin(2wyt))]
(8)

2
where A = — L K9 cos(¢), B=—K—2i.
Wy Y 8% Wu

3Datto|i, G.; Giannessi, L.; Mezi, L.; Torre, A. Theory of generalized bessel functions.
Nuovo Cimento B (1971-1996) 1990, 105, 327-348. o = = =
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exp [iw (A sin(wq,t)+ B sin(2 wyt))]
two variable-one index cylindrical Generalized Bessel Function by*
In(z,y).

+oo

Z ei”ﬂJn(x,y) — e sin(¥)+: y sin(2 19)’ V:r,y eC (10)

n=—oo

(9)

Integral representation
Il@9) = l/ cos(nd—z sin(¥)—y sin(29))dd, Vz,y € C,¥Vn €N
T Jo
(11)

Infinite series

oo
Jﬂ(m’y) = Z Jn—2l(m) Jl(y) (12)

l=—0oc0

*It is accordingly evident that for B < A — J,,(Aw, Bw) ~ J,,(Aw)

and therefore the usual harmonic pattern is recovered. = E ‘3/‘*(‘
12/53
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,52 oo . (13)
~ exp |:iw <l+ (1—?) [;?*) t:| Z el"w“tJn(Aw, Buw).

n=-—oo

The variables Aw, Bw enter within the domain consistent with the GBF correct definition,
therefore there no caveats for their use within the expansion of the LW exponential. After a
significant amount of algebra, involving the properties of GBF

82r > w
o< Sn (—) .
owoy =~ w1

(14)
K
. |:19 cos(¢)Jm(Aw,Bw)+2— (Jm—1(Aw,Bw)+ Jp, 41 (Aw, Bw))]
A7
where Sy, (z) = 2:}2" sinc [N 7 (z —n)] e? N7 (#=1) with w; = 2}\7"1‘3 and
A 2
M=l <1+ K-+ (719)2>.
=} F = E E 9ac
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(1) Spontaneous  (2) Modulation,

Haononoao

(4) Overbunching,

power

Jogifadisted

P gain

Figure

Length along undulator

: FEL in the Self Amplified Spontaneous Emission mode
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Pendulum equation

d2
WC=|G|COS(C+¢),

T = j = 2mgqo, a:|a|ei¢, Y= —

z
La

FEL high gain integral equation is derived from the linearization of
Egs. (15) where z is the longitudinal coordinate, L undulator lenght,
go small signal gain coefficient, a and 7 Colson’s dimensionless
amplitude and current respectively, (,v F'EL longitudinal phase
space variables and the brackets denote average on the phase space
distribution®.

G Dattoli, E. Di Palma, S. Licciardi, E. Sabia, Free Electron Laser ngh Gain Equat:on and
Harmonic Generation, MDPI, Appl. Sci., 11(1), 85, 2021 =] = Q>
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Approximations — the lowest order (in the field strength) expansion of ¢

¢~ Co+voT + 8¢, 8¢ = /T(T —7)Re <a(7’l)ei(<0+"0‘r’)> dr’
0

where vg = QTFNUJ?U;W

(16)

is the detuning parameter. We take the averages on the electron-field

phase (o by considering the e-beam mono-energetic and without spatial and angular dispersion,

thus getting, b,, = <e—i"<0)<0,

27 =) .
WMo = 5= [ FCoIRC)dCo, F(Go) = 3 bnei™o.

n=—oo
and so, inserting §¢ in the second of Egs. (15), we get

d ; 7 . ’
=C =—2mggobre V0T 4+ iﬂgo/ (r = a(r")e 0T gl 4
T 0

T 9 ’
+i‘rrgob2/ (r—"ya* (#)e” 0 TET g
0

i) Absence of an initial bunching (f({o) constant) Eq. (18)

d T . ’
—a = iﬂgo/ (r — ‘r,)a('r/)e_q'VO(T_T ddr'.
dr )

Energy modulation and consequent bunching are due to the input coherent seed ag=

an)

(18)

(19)

Do
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ii) Non constant f((p) and emergence of non zero b,, coefficients, the field may grow in a seedless
mode, induced by the initial bunching coefficient.
%) A perturbative expansion in the small signal gain coefficient to the 2-order in go and neglecting®

ba: a(7) =~ ag + goa1 + gZas

d ; d . _ ,
ao(r) = 0, = —27bre” Y07, = i‘rr/o (r = ar(+)e” 0= 4" (20)

. voT i
51“(7) T w272 4vgT —6i)ePYOT 61 + 2vgT
2 ) —ivo}% _7”90( 07 t4vo ) + 0

a(T)~—27by T
(m) 90 o 5 P

(21)
In Eq. (20) compares a double integral, eliminable by keeping two successive derivatives

) T / N _—ivg(r—7") 1 _ . —ivgr [T o N iveT!! ’
iTgo A (r—71)a(r")e dr’ =imgpe A A a(t’)e dr dr’.

(22)
*) But the FEL integral equation (18) can also be reduced to the 3-order ODE
a a a ; a d
[D?_ + 2iu0D72_ — VgD-,—] a(t) =ingo (a(-r) + by a*(_r)e—zwor) , D, = di (23)
-
o cligible by Eq—(23)-leadsto-th penential growth also referred as FEL instability7.

GThe 2-order bunching coefficient does not produce any appreciable contribution and can be
safely neglected.

This type of instability is common to any Free Electron device (Gyrotrons and*=CARM:too):) @ (~
18 /53
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a) Ciocci-Algorithm:

i) The solution can be written as

3 .
a(r) = e~ tvoT Z K/jefuiuj‘r (24)
j=1

where §v; are the roots of the third degree algebraic equation éuz(uo + év) = mgo
ii) Amplitudes x is fixed by the initial conditions a(0) = ag = ¥7_; j,

d 3
a z Kjov;=—2mgoby — Z Kjov; = a1 = —vgag — 2imgoby,
dr |r=0 p=i =
& 2 2 < 2 g 2 2
— =—vjag—2ivy Z Kjov;— z ki (6v;)" — Z kj (6v;)? =az=viag+2imrggoby
=0 j=1 j=1 j=1
(25)
iii) Eq. (24) is cast in the more convenient form
—ivgT _Z)m m i
a(t) =e © Z ——am7T am = Z Kj (5Vj) o (26)
m=0 i=1
oy 3 = = z 9ac
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iv) The coefficients o, are obtained from characteristic equation written as

vo (8v;)2 + (6v4)° = mgo (27)

which, after multiplying by x; and summing on the index j, yields the recursion
a3 = mggag — vooz which is clearly generalized as (and implemented numerically)

Qm = TGom—3 — VOXm—1- (28)

b) Cardano’s method - The Fang-Torre formula for the analytic solutions of eq. (27) can be
obtained too® valid for ag # 0, by = 0,

@0 —2iy, T{ —L+a)r L(pta)r
——————e¢ 3707 ((~votptqle 3 +2(2v0 +p + q)e® o
3(vo+p+q)

. |:cosh (ﬁ(p — q)'r) + 2@ sinh (ﬁ(p — q)‘r>:| },
6 pP—q 6

1 1
1 3 1 3
p= [§(T+ \/E)] 3 , = [5(7' — \/3)] 3 , T =27mwgg — 2ug, d=27Trgo(27mgo — 41/8’).
(29)

a(r,vo)=

The | a(t,vp) |2 is intensity growth as a function of the dimensionless time and of the detuning

P +
This Formula appeared in an unpublished manuscript by H. Fang and later derived, with

minor refinement by A. Torre, and reported in Dattoli G., Renieri A., Torre A. Lecture on Free

Electron Laser Theory and related topics, World Scientific Singapore,"251 1990. E = HAQ

20/53
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Pendulum equations including the higher order harmonics can be written as

d2 0 d .
——¢= > | an | cos(¢n), Yn = nltén, —an = —jn{e "),  jn = 27go,n
dr =0 dr
(30)
where an, =| an, | et®n and 9o,n are the dimensionless amplitude and harmonic small signal gain

parameter of the n-th order harmonics

d

. T . ’
d—an=—27rgobne_w”‘r+i‘rrngn/ (‘r—‘r')an(‘r')e_w”(‘rar )d‘r', vp =27 N
T 0

nwy — w

nwo
(31)

Same considerations developed for the fundamental harmonic (n = 1), hold in the present case
too. The only significant difference being that the n-the harmonic Pierce p is now specified by

2
fon \3
Pl = Yn pn, pn:p(ff’" y Foon = Jn—1 (n€) — Jnq1 (n€), fo,1 =Fp-
b 2 2
N (32)
The gain length associated with the harmonic growth is specified by Ly », = — "% which is
47/3pn
larger than the corresponding value of the fundamental harmonic, namely
L =_—"% - __ T . This means that the lethargic region of small signal harmonic
ST An/3pk In 2
power growth, before the on-set of the exponential regime, is larger. - = = = oA
21/53
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Radiation growth - Volterra Integro Differential Equation

T o (mper!)?
O- a=i7rgo/ e VT _MTG,(T—T/) dr’
0 (33)

a(0) =1

a represents the laser field amplitude, gg the small signal gain
coefficient, v is linked to the laser frequency and the coefficient p. is
a parameter regulating the effects of the gain reduction due to the
electrons’ energy distribution. It is an integro-differential equation of
Volterra type®. The kernel of the integral part is not trivial, Eq. (34)
cannot indeed been solved analytically, unless y. = 0.

9M. Artioli, G. Dattoli, S. Licciardi, S. Pagnutti; Fractional
Derivatives, Memory kernels and solution of Free Electron Laser
Volterra type equation, Mathematics 2017, 5(4),573. - =
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Coteus flz) =" :Cng — > (@) o e“oo (35)
Fract; n=0 ’ n=0 ’
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Physical I(Oé, B, /'y) = /00 e—(a+ﬂ)x2—'ywdx — / e—azze_(fy—kﬁw)xd:p

Applications — 0 — 0

Further = = (360)R(‘

Developments o F
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Hermite Calculus!® — A 1)y — h

e+ _ i o m(y,-8) (37)
e~Pon-p® = iﬂ (_T—T)Tﬁfm—ﬁ) (38)
I(a, B,7) = /oo e~ ~he -0 gy (39)
b, gy = He(v,—B) (40)

Operator h — ordinary algebric quantity

oHermlte Calculus, G. Dattoli, B. Germano, S. Licciardi, M.R. Martinelli, Modeling in
Mathematics, Atlantis Transactions in Geometry, vol 2. pp. 43-52, 2017. = =
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oo
ay = ) T go E amle1+3,

m1=0

H,,

Ay =

mal(my +2) (my +3)

( #E
/d’r/ ”(m+1)d’r"

(44)

Do
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Second order solution

as = (i 7rg0) — / / ”(m2+1)a1('r +ydr", (46)
m2 =0 ™M2:
2 = 6
az = (i 7 go) Z aml,m27m1+m2+ ’
mq,mgo=0
+3
Qmq.me = Om mlz <m1+3> Himy =
1 s 2 mal(ms + s + 2)(m2 + m1 +6)
_ (=1)° Hrny Hmy 4'”12*3( m1+3 ) (-v°
malmil(my + 2) (m1 + 3)(m2 + m1 +6) =, s (ma2 + s +2)
(47)

Higher order solution: In the present nested procedure the nth order can be computed in a

modular way just looking at the symmetries of the expansion itself.

SO n
= (790)" 3 amy.mar(Erm1mr¥3R),
my,..mp=0
(Srz! met3n-1)
B — 48
Fmy,mp = Omy,mp g > Zr 1mr+3(’" K ) “
5=0
(71)5Hmn

DEE

.mn!(mn+s+2) (Eﬁ:lmr-kSn). - = = 20 /53
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35 g 35 B

(c) M =20 (d) M =25

Figure: Comparison between complete numerical integration with no
broadening effects (1 = 0) G(v,0) =|| a ||> —1 with go = 5 at the
end time 7 = 1, performed by Mathematica, and Hermite solution

G(v,0) = [lag + a1 + az||” — 1 at different truncation levels . 300/?:



Introduction

Special
Function

Cardano
Method

Umbral
Calculus

Fractional
Calculus

Fractional
PDE and
ODE

Physical
Applications

Further
Developments

(a) pe = 0.1, M =10

(b) pe =0.1, M =25

[

G
N s o @ B
i

cow
s s o o B

Namericd

- Hemie

ED =3 g g

(c) pe =0.7, M =10

%

(d) pe =0.7, M = 25

Figure: With different broadening effects G (v, uu.) =|| a ||?> —1 with
go = 5 at the end time 7 = 1 and Hermite solution
G(v, pe) = |lao + a1 + as||> — 1 at different truncation levels .
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i —iv(T— _(mue)? T—¢£)2
reLDf(0) = [ Ef(Qem O g
0
Real Order Fractional Derivative (Integral) according to:

@ Caputo!?

(49)

- s /0 ‘@& g ©)de, 0<a<l (50)

11 . . 5 n
Caputo M. Linear models of dissipation whose Q is almost frequency independent, Geophys.

J. R. astr. Soc., 13, 1967, pp. 529-539.

Do
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—iv(T— (""Hs) T—
rELD- f(1) / Ef(&)e 70~ (=8 de (49)
Real Order Fractional Derivative (Integral) according to:

o Caputo!?

bzg<x>=ﬁ/;<x—s) J©de, 0<a<1 (50)

11—«

@ Hadamard!?

DI g(x) = ﬁ /cm (log %) o %df, x>c (51)

11Caputo M. Linear models of dissipation whose Q is almost frequency independent, Geophys.
J. R. astr. Soc., 13, 1967, pp. 529-539.
J. Hadamard, Essai sur |'étude des fonctions données par leur developpement de Taylor J.
Pure Appl. Math., 4(8), pp. 101-186, 1892. o [ = A
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Real Order Fractional Derivative (Integral) according to:

@ Atangana-Baleanu!3
15:° g(0) = =20(0) + 7 [ (w9 g(eae
o fle) f(@)T(a) /.

(52)
with f(a) function of normalization : f(0) = f(1) = 1. It exploits a generalized
Mittag-Leffler function and with a kernel not local and not singular.

@ Euler-Riemann-Liouville!*
D g = s [ @- 0 g(@ds, a>0 (53)
AT ) S, e

with g(z) is piecewise continuos on (0, co) and integrable on any finite subinterval based
on the Lagrange rule for differential operators

13 q _— o q
A. Atangana, D. Baleanu New fractional derivatives with non-local and non-singular kernel:

theory and applications to heat transfer model, Therm Sci, 20 (2016), pp. 763-769
4K.B. Oldham, J. Spanier; The Fractional Calculus: Theory and Applications of Differentiation
and Integration to Arbitrary Order, Mathematics in Science and Engineering, vol 111, 1974= ) (v
35/53
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Corollary

Using the Euler-Riemann-Liouville definition for real order
derivative
A r 1
Dfz? = L vTe Vr,a,v €R, (54)
'v—a+1)
we find?
o « «a z
DY Eq1(Az%) = AEq1(Az®) + m, Vz,\ € R,Va € RY.
(55)
?The extra-term emerges because, according to Eq. (54), the fractional derivative of a constant
does not vanish.

Do
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VvV, A € R, Vn € N, therefore

82 En,l(Ax") = )\En,l(A:c"),

Vn € N,Vz, A € R.

We note that E,, 1(Az™) is an eigenfunction of the 9} operator

(56)

It can be extended also to the case of real order ML functions.

In this case derivatives of non-integer order have to be

considered.

Do
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Example

Vz € R,Va € Rt Vt € RY,

t—Ot

Bt“F(x,t) = 8§ F(a:,t) + mf(x), (57)

F(z,0) = f(=),

defines a time-fractional diffusive equation.

According to the previous discussion, to the fact that the ML
"Eq.1(t%)" is an eigenfunction of the fractional derivative operator,
according to the definition (55) and considering the formalism
developed, we can obtain the relevant solution in the form
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Definition

Va € RY,Vt € R{, E, 1(t*02) is the pseudo-evolution
operator .

Introduction

The relevant action on the initial function can be espressed as

Special

Function

Cardano o0\ 7 349

Method F(m, t) - \/—/ tak )f(k) elm dk, (59)
Umbral -

Callailee where f(k) is the Fourier transform of f(x).

Fractional

Calculus Proof.

: 1 0 5 i 1
Fractional F(z,t) = Bg,1 (%02 = 7/ Eo 1 (t* 82)f(k)e' ™ dk = ——

PDE and (@:1) = Ba,1(t70;) fo) = —o= a1 (¢ 83) f(k)e —
ODE co X Lor 2r b s 2 _—

: . —2 __f(k)eFdr = / k)2 f(k)e' ™ dk =
- /_Oo > S o ®e \/27 O +1) k) (ke (60)
Applications

1 oo par —k2 T X
Further = /'oo ¥f(k)e”:kdk B B
Developments V2m J—oo r=0 T(ar+1) =] F = = = A
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(a) a=1.5.

(&

Figure: Solution F(z,t) for f(z) = e™* — f(k) = , at

different times for different o values.

Behaviour not simply diffusive but also anomalous. Important
in the description of processes called super or sub-diffusive..

role
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40/53



== Time Fractional Schrodinger Equation

We solve the time fractional Schrédinger equation (FSE) for a
physical process implying the emission and absorption of photons.

e We assume that the relevant dynamics is ruled by the ML -
Ph.D. Schrédinger equation 1°

; v(0) ),
Il -« 1¥(0)) (61)
H=i"Q(a—a"), 0<a<lVteR]

O | U =H | U ) 4

where a,a™ are annihilation, creation operators satisfying the
commutation relation [a,a*] = 1 and the constant 2 has the
dimension of t~¢.

If we work in a Fock basis and choose the "physical” vacuum (namely
the state of the quantized electromagnetic field with no photons) as
the initial state of our process namely | ¥(¢) ) |;=o=| 0 ), we can

understand how the field ruled by a F'SFE evolves from the vacuum.

15 q q q q o m A
According to Dirac notation we write the state | ) to indicate“the function W¥{(t).
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The solution of our FSE therefore writes

|\I,>=ea(2t"ﬂ(fz—fz+) |0>=
_(adt> )" —(adt* @) at (adt® n)a|0>'

=€ 2 e

The use of the identities (a*)” |0) =+vn!|n)and a|0) =0
finally yields the solution in the form

a”a
_ (adt> 0)?

| W )=e g o~ (adt* Q)a |0) =

(ad > 0)2

(62)

(63)
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Va, s € RT
Lo = / Ea 5(—2?)dz (64)

1
Introduction o I = éﬁ_l foo ——dx =
a, B —o0 O Q2 %o

Special 1 Tctw
Function AB—1 [ B—5—1

¢ o s dT o =TT 2T g =
Cardano f_oo 1 +c aw2
Method

AR g —1
Umbral QI,5= (ﬁcﬂ %-1 foooe sg 2ds> 0o =
Calculus ’

: 1 ™
Fractional ~AB—<—1 _
Calculus \/7_1— r (5 C 2 $Yo = m

. 2
Fractional
PDE and

i Q L.s :f“’ Eaﬁ(_ﬁ)dx:fw —a,8d 2® gy Yo =

e
—o0 —o0

1
Physical N\ 2 7T
Applications \/7_T (a, ﬁd) wo =

Further
Developments o & =
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1) Non-perturbative treatment of the anharmonic oscillator*®

oo 4 2
J(a,b,c) = / e~ (axT4bxTdex) g Re(a) >0 (65)
— 0
2
N 2 @
J(a,b,c) = /w e M —a) T e g : 4h =
—oo h (66)
X1 fe\2s A_(s+l)
=7 = (= h 2
w25 (5)
o= 1
T I (R (67)
—(s+3)
oo 72 & dk
10r.0) = [ e ae = ymh=2 (68)
— o0
2) Pearcey Integral used in Optics for diffraction problems”
L L
oo . ™
J(1, @, —iy) :/ e~ (T HatDtivt gy [ e M-1) (69)
=cz )
oo TL
J(1, z, —iy) Z 9gn (1) [Hn(—iy, —=) + Hn (iy, —z)] (70)

16J Bohacik, P. Augustin and P. Presnajder, "Non-perturbative anharmonic correction to
Mehler’s presentation of the harmonic oscillator propagator”, Ukr J. Phys. 59, 179 _12014) o0 sae

& Jos L. Lopez and Pedro J. Pagola, arXiv:1601.03615 [mat NA]. 44/53
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Umbral o0 r
Calculu _]-
alculus f(:c,a,b)= ( ) l a b2 ( )
Fractional 0 ’r‘!
Calculus =
75
Fractional r (T—S)bs ( )
a

PDE 1 —
S lr(a,b) =r!

= (21— 8)P

1G. Dattoli, E. Sabia, E. Di Palma, S. Licciardi; “Products of Bessel functions and associated
Further polynomials”; Applied Math. and Comp., Vol 266 Issue C, 2015, pp 507-514, EIsevner Scnence Inc.
Developments New York, NY, USA o 5 = Hac
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Equation descrabing the evolution of magnetized turbolent

Y0} = V2 p + (0,00, — 0yh0,) V39

where ¢ is the electric field scalar potential with initial condition
v =0.0188, a = 1.
Mathematica - Fipy (object oriented, PDE solver, written in

rnd(0,1), Op(x,y,t) [t=o= 0.1,

Orpy = V3
Or(yh1) = V21 + ad;(@;0542),
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Mathematica: {Eq. (76) Explicit RK, Eq. (77) Perturbative
approach}

Fipy : {Eq. (77) standard finite volume}

Neumann Boundary conditions (= 0) and different examples of
initial conditions:

1) ¢(x,y,0) = WJO (6+/(z —1)2 —1)2)

QS(x’yaO)—l $,y>1 B

4)¢(w,yAD-—-—£—sum1ox)

100
5) ¢(x,y,0) = 0.01 + rnd(()(2 —1)).

1000
(78)

- = = = = 9ac
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“Ovunque vi sia la minima speranza di successo,
esamineremo accuratamente le definizioni e i

metodi deduttivi proficui. Li coltiveremo, li

consolideremo e Ii renderemo spendibili”

David Hilbert
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“Ovunque vi sia la minima speranza di successo,
esamineremo accuratamente le definizioni e i

metodi deduttivi proficui. Li coltiveremo, li

consolideremo e Ii renderemo spendibili”

David Hilbert

Thanks to all

Silvia Licciardi
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