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Lienard-Wiechert LW integral → spectral properties of the emitted radiation

∂2I

∂ω ∂Ω
∝

∣∣∣∣∣
∫ +∞

−∞

[
~n× (~n× ~β)

]
exp

[
i ω (t−

~n · ~r
c

)

]
dt

∣∣∣∣∣
2

, (1)

Pendulum equation

d2

d τ2
ζ = | a | cos (ζ + φ) ,

d

dτ
a = −j〈e−iζ〉, (2)

τ =
z

L
, j = 2πg0, a = | a | eiφ, ν =

d

dτ
ζ

Radiation growth - Volterra Integro Differential Equation

∂τ a = i π g0

∫ τ
0
τ
′
e
−i ν τ′− (πµετ

′)2
2 a(τ − τ ′) dτ ′

a(0) = 1

(3)
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Lienard-Wiechert LW integral → spectral properties of the emitted
radiation

∂2I

∂ω ∂Ω
∝
∣∣∣∣∫ +∞

−∞

[
~n× (~n× ~β)

]
exp

[
i ω (t− ~n · ~r

c
)

]
dt

∣∣∣∣2 , (4)

I is the intensity, ω frequency, Ω solid angle, ~n observation unit
vector, ~r, ~β = ~̇r/c trajectory the velocity vector coordinates of the
electrons 1 2

exp

[
i ω

(
t−~n · ~r

c

)]
(5)

1G. Dattoli, E. Di Palma, S. Licciardi, E. Sabia, Generalized Bessel
Functions and Their Use in Bremsstrahlung and Multi-Photon Processes,
MDPI, Symmetry, 13, 159, 2021.

2Dattoli, G.; Renieri, A.; Torre, A. Lectures on Free Electron Laser and
related Topics, 1st ed.;World Scientific: Singapore, 1990.
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Since the electron motion assumed to be ultra-relativistic, the
radiation is emitted mostly in the forward direction and therefore θ is
of the order of 1

γ (where γ >> 1 is the electron relativistic factor).
Hence the vector ~n can be approximated as

~n ≡ (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) '
(
ϑ cos(φ), ϑ sin(φ), 1− 1

2
ϑ2

)
.

(6)

Figure: Permanent magnet block arrangement in undulators (the arrow denotes the direction of
the magnetization vector), on axis field distribution and electron beam trajectory.
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Electrons equation of motion can be easily solved and at the lowest
order in 1/γ, thus getting3

~n · ~r ' −
c

ωu

K

γ
ϑ cos(φ) sin(ωut)+

(
1−

ϑ2

2

)
β
∗
ct−

K2

8 γ2

c

ωu
sin(2ωut), (7)

with ωu =
2π c

λu
, β∗ ' 1−

1

2γ2

(
1 +

K2

2

)
, K =

eB λu

2πmc2
.

exp

[
i ω

(
t−~n · ~r

c

)]
'

' exp

[
i ω

(
1+

(
1−ϑ

2

2

)
β∗
)
t

]
exp [iω (A sin(ωut)+B sin(2ωut))]

(8)

where A = − 1
ωu

K
γ
ϑ cos(φ), B = − K2

8 γ2
1
ωu

.

3Dattoli, G.; Giannessi, L.; Mezi, L.; Torre, A. Theory of generalized bessel functions. Il
Nuovo Cimento B (1971–1996) 1990, 105, 327–348.
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exp [iω (A sin(ωut)+B sin(2ωut))] (9)
two variable-one index cylindrical Generalized Bessel Function by4

Jn(x, y).
+∞∑

n=−∞
ei n ϑJn(x, y) = ei x sin(ϑ)+i y sin(2ϑ), ∀x, y ∈ C (10)

Integral representation

Jn(x, y) =
1

π

∫ π

0

cos(nϑ−x sin(ϑ)−y sin(2ϑ))dϑ, ∀x, y ∈ C,∀n ∈ N

(11)
Infinite series

Jn(x, y) =

+∞∑
l=−∞

Jn−2l(x) Jl(y) (12)

4It is accordingly evident that for B � A → Jn(Aω,Bω) ≈ Jn(Aω)
and therefore the usual harmonic pattern is recovered.
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(a) Jn(x) for n = 0. (b) Jn(x, y) for n = 0.

(c) Jn(x)for n = 3. (d) Jn(x, y) for n = 3.

Figure: Ordinary and Generalized Bessel Function for different n values.
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exp

[
i ω

(
t−

~n · ~r
c

)]
'

' exp

[
i ω

(
1 +

(
1−

ϑ2

2

)
β
∗
)
t

] +∞∑
n=−∞

e
i n ωutJn(Aω, B ω).

(13)

The variables Aω,Bω enter within the domain consistent with the GBF correct definition,
therefore there no caveats for their use within the expansion of the LW exponential. After a
significant amount of algebra, involving the properties of GBF

∂2I

∂ω ∂Ω
∝

∞∑
m=−∞

Sn

(
ω

ω1

)
·

·
[
ϑ cos(φ)Jm(Aω,Bω)+

K

2γ

(
Jm−1(Aω,Bω)+Jm+1(Aω,Bω)

)] (14)

where Sn(x) = 2Nπ
ωu

sinc [N π (x− n)] ei Nπ (x−n) with ω1 = 2πc
λ1

and

λ1 = λu
2 γ2

(
1 + K2

2
+ (γ ϑ)2

)
.
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Figure: FEL in the Self Amplified Spontaneous Emission mode
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Pendulum equation

d2

d τ2
ζ = | a | cos (ζ + φ) ,

d

dτ
a = −j〈e−iζ〉, (15)

τ =
z

L
, j = 2πg0, a = | a | eiφ, ν =

d

dτ
ζ

FEL high gain integral equation is derived from the linearization of
Eqs. (15) where z is the longitudinal coordinate, L undulator lenght,
g0 small signal gain coefficient, a and j Colson’s dimensionless
amplitude and current respectively, ζ, ν FEL longitudinal phase
space variables and the brackets denote average on the phase space
distribution5.

5G. Dattoli, E. Di Palma, S. Licciardi, E. Sabia, Free Electron Laser High Gain Equation and
Harmonic Generation, MDPI, Appl. Sci., 11(1), 85, 2021
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Approximations → the lowest order (in the field strength) expansion of ζ

ζ ' ζ0 + ν0τ + δζ, δζ =

∫ τ
0

(τ − τ ′)Re
(
a(τ
′
)e
i(ζ0+ν0τ

′)
)
dτ
′ (16)

where ν0 = 2πN
ω0−ω
ω0

is the detuning parameter. We take the averages on the electron-field
phase ζ0 by considering the e-beam mono-energetic and without spatial and angular dispersion,
thus getting, bn = 〈e−inζ0 〉ζ0 ,

〈κ(ζ0)〉ζ0 =
1

2π

∫ 2π

0
f(ζ0)κ(ζ0)dζ0, f(ζ0) =

∞∑
n=−∞

bne
inζ0 . (17)

and so, inserting δζ in the second of Eqs. (15), we get

d

dτ
a =−2πg0b1e

−iν0τ + iπg0

∫ τ
0

(τ − τ ′)a(τ
′
)e
−iν0(τ−τ′)

dτ
′
+

+iπg0b2

∫ τ
0

(τ − τ ′)a∗(τ ′)e−iν0(τ+τ′)
dτ
′
.

(18)

i) Absence of an initial bunching (f(ζ0) constant) Eq. (18)

d

dτ
a = iπg0

∫ τ
0

(τ − τ ′)a(τ
′
)e
−iν0(τ−τ′)

dτ
′
. (19)

Energy modulation and consequent bunching are due to the input coherent seed a0.
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ii) Non constant f(ζ0) and emergence of non zero bn coefficients, the field may grow in a seedless
mode, induced by the initial bunching coefficient.
∗) A perturbative expansion in the small signal gain coefficient to the 2-order in g0 and neglecting6

b2: a(τ) ' a0 + g0a1 + g2
0a2

a0(τ) = 0,
d

dτ
a1 = −2πb1e

−iν0τ ,
d

dτ
a2 = iπ

∫ τ
0

(τ − τ ′)a1(τ
′
)e
−iν0(τ−τ′)

dτ
′ (20)

a(τ)'−2πb1g0

 sin
(
ν0τ
2

)
ν0
2

e
−iν0

τ
2 −

1

2
πg0

(iν2
0τ

2+4ν0τ−6i)e−iν0τ + 6i + 2ν0τ

ν4
0

.
(21)

In Eq. (20) compares a double integral, eliminable by keeping two successive derivatives

iπg0

∫ τ
0

(τ − τ ′)a(τ
′
)e
−iν0(τ−τ′)

dτ
′

= iπg0e
−iν0τ

∫ τ
0

(∫ τ′
0

a(τ ′′ )eiν0τ
′′
dτ ′′

)
dτ
′
.

(22)
∗) But the FEL integral equation (18) can also be reduced to the 3-order ODE

[
D̂

3
τ + 2iν0D̂

2
τ − ν

2
0 D̂τ

]
a(τ) = iπg0

(
a(τ) + b2 a

∗
(τ)e
−2iν0τ

)
, D̂τ =

d

dτ
(23)

and, for negligible b2, Eq. (23) leads to the exponential growth also referred as FEL instability7.
6The 2-order bunching coefficient does not produce any appreciable contribution and can be

safely neglected.
7This type of instability is common to any Free Electron device (Gyrotrons and CARM too).
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a) Ciocci-Algorithm:

i) The solution can be written as

a(τ) = e
−iν0τ

3∑
j=1

κje
−iδνjτ (24)

where δνj are the roots of the third degree algebraic equation δν2(ν0 + δν) = πg0

ii) Amplitudes κj is fixed by the initial conditions a(0) = α0 =
∑3
j=1 κj ,

d

dτ
a

∣∣∣∣
τ=0

=−iν0α0−i
3∑
j=1

κjδνj=−2πg0b1 →
3∑
j=1

κjδνj = α1 = −ν0α0 − 2iπg0b1,

d2

dτ2
a

∣∣∣∣∣
τ=0

=−ν2
0α0−2iν0

3∑
j=1

κjδνj−
3∑
j=1

κj
(
δνj

)2→ 3∑
j=1

κj
(
δνj

)2
=α2 =ν

2
0α0+2iπν0g0b1

(25)

iii) Eq. (24) is cast in the more convenient form

a(τ) = e
−iν0τ

∞∑
m=0

(−i)m

m!
αmτ

m
, αm =

3∑
j=1

κj
(
δνj

)m
. (26)
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iv) The coefficients αm are obtained from characteristic equation written as

ν0
(
δvj

)2
+
(
δνj

)3
= πg0 (27)

which, after multiplying by κj and summing on the index j, yields the recursion
α3 = πg0α0 − ν0α2 which is clearly generalized as (and implemented numerically)

αm = πg0αm−3 − ν0αm−1. (28)

b) Cardano’s method - The Fang-Torre formula for the analytic solutions of eq. (27) can be
obtained too8 valid for a0 6= 0, b1 = 0,

a(τ, ν0)=
a0

3(ν0+p+q)
e
− 2i

3
ν0τ

{
(−ν0+p+q)e

− i
3

(p+q)τ
+2(2ν0 + p + q)e

i
6

(p+q)τ ·

·
[
cosh

(√
3

6
(p− q)τ

)
+ i

√
3ν0

p− q
sinh

(√
3

6
(p− q)τ

)]}
,

p =

[
1

2
(r +

√
d)

] 1
3
, q =

[
1

2
(r −

√
d)

] 1
3
, r = 27πg0 − 2ν

3
0 , d = 27πg0(27πg0 − 4ν

3
0 ).

(29)

The | a(t, ν0) |2 is intensity growth as a function of the dimensionless time and of the detuning
parameter.

8This Formula appeared in an unpublished manuscript by H. Fang and later derived, with
minor refinement by A. Torre, and reported in Dattoli G., Renieri A., Torre A. Lecture on Free
Electron Laser Theory and related topics, World Scientific Singapore, 251 1990.
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Pendulum equations including the higher order harmonics can be written as

d2

dτ2
ζ =

∞∑
n=0

| an | cos(ψn), ψn = nζ+φn,
d

dτ
an = −jn〈e−inζ〉, jn = 2πg0,n

(30)
where an =| an | eiφn and g0,n are the dimensionless amplitude and harmonic small signal gain
parameter of the n-th order harmonics

d

dτ
an=−2πg0bne

−iνnτ+iπngn

∫ τ
0

(τ−τ ′)an(τ
′
)e
−iνn(τ−τ′)

dτ
′
, νn=2πN

nω0 − ω
nω0

.

(31)

Same considerations developed for the fundamental harmonic (n = 1), hold in the present case
too. The only significant difference being that the n-the harmonic Pierce ρ is now specified by

ρ
∗
n = 3√n ρn, ρn = ρ

(
fb,n

fb

)2
3
, fb,n = Jn−1

2

(nξ)− Jn+1
2

(nξ), fb,1 =fb.

(32)

The gain length associated with the harmonic growth is specified by Lg,n =
λu

4π
√

3ρn
which is

larger than the corresponding value of the fundamental harmonic, namely

L∗g,n =
λu

4π
√

3ρ∗n
=

1

3√n
Lg,n. This means that the lethargic region of small signal harmonic

power growth, before the on-set of the exponential regime, is larger.
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Radiation growth - Volterra Integro Differential Equation

∂τ a = i π g0

∫ τ

0
τ ′e−i ν τ

′− (πµετ
′)2

2 a(τ − τ ′) dτ ′

a(0) = 1

(33)

a represents the laser field amplitude, g0 the small signal gain
coefficient, ν is linked to the laser frequency and the coefficient µε is
a parameter regulating the effects of the gain reduction due to the
electrons’ energy distribution. It is an integro-differential equation of
Volterra type9. The kernel of the integral part is not trivial, Eq. (34)
cannot indeed been solved analytically, unless µε = 0.

9M. Artioli, G. Dattoli, S. Licciardi, S. Pagnutti; Fractional
Derivatives, Memory kernels and solution of Free Electron Laser
Volterra type equation, Mathematics 2017, 5(4), 73.
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∂τ a = i π g0

∫ τ

0
τ ′e−i ν τ

′− (πµετ
′)2

2 a(τ − τ ′) dτ ′, a(0) = 1

(34)

Umbral Calculus

f(x) =

∞∑
n=0

cn
xn

n!
→

∞∑
n=0

(ĉnϕ0)
xn

n!
= eĉxϕ0 (35)

I(α, β, γ) =

∫ ∞
−∞

e−(α+β)x
2−γxdx =

∫ ∞
−∞

e−αx
2
e−(γ+βx)xdx

(36)
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∂τ a = i π g0

∫ τ

0
τ ′e−i ν τ

′− (πµετ
′)2

2 a(τ − τ ′) dτ ′, a(0) = 1

(34)

Umbral Calculus

f(x) =

∞∑
n=0

cn
xn

n!
→

∞∑
n=0

(ĉnϕ0)
xn

n!
= eĉxϕ0 (35)

I(α, β, γ) =

∫ ∞
−∞

e−(α+β)x
2−γxdx =

∫ ∞
−∞

e−αx
2
e−(γ+βx)xdx

(36)
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∂τ a = i π g0

∫ τ

0
τ ′e−i ν τ

′− (πµετ
′)2

2 a(τ − τ ′) dτ ′, a(0) = 1

(34)

Umbral Calculus

f(x) =

∞∑
n=0

cn
xn

n!
→

∞∑
n=0

(ĉnϕ0)
xn

n!
= eĉxϕ0 (35)

I(α, β, γ) =

∫ ∞
−∞

e−(α+β)x
2−γxdx =

∫ ∞
−∞

e−αx
2
e−(γ+βx)xdx

(36)
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l
Hermite Calculus

Hermite Calculus10 → ĥ η0 → ĥ

e−(γ+βx)x =

∞∑
r=0

(−x)r

r!
Hr(γ,−β) (37)

e−ĥ(γ,−β)x =

∞∑
r=0

(−x)r

r!
ĥr

(γ,−β) (38)

I(α, β, γ) =

∫ ∞
−∞

e−αx
2−ĥ(γ,−β)xdx (39)

ĥr(γ,−β) = Hr(γ,−β) (40)

Operator ĥ → ordinary algebric quantity

10Hermite Calculus, G. Dattoli, B. Germano, S. Licciardi, M.R. Martinelli, Modeling in
Mathematics, Atlantis Transactions in Geometry, vol 2. pp. 43-52, 2017.
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Fel High Gain Equation

e
−τ ′ĥ(

iν,− (πµε)2

2

)
=

∞∑
m=0

(−τ ′)m

m!
ĥr(

iν,− (πµε)2

2

) (41)

e
−
(
iν+

(πµε)2

2 τ ′
)
τ ′

=

∞∑
m=0

(−τ ′)m

m!
Hr

(
iν,− (πµε)

2

2

)
(42)

∂τan = iπg0

∫ τ

0

τ ′e
−τ ′ĥ(

iν,− (πµε)2

2

)
an−1(τ − τ ′)dτ ′ =

= i π g0

∞∑
m=0

1

m!

∫ τ

0

τ ′(m+1)Hm

(
−i ν,− (π µε)

2

2

)
an−1(τ − τ ′) dτ ′

(43)
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Fel High Gain Equation

First order solution

a1 = i π g0

∞∑
m=0

Hm

(
−i ν,− (π µε)2

2

)
m!

∫ τ

0
dτ ′
∫ τ ′

0
τ ′′(m+1)dτ ′′,

(44)

a1 = i π g0

∞∑
m1=0

αm1τ
m1+3,

αm1 =
Hm1

m1!(m1 + 2) (m1 + 3)
.

(45)
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l
Fel High Gain Equation

Second order solution

a2 = (i π g0)
2
∞∑

m2=0

Hm2

m2!

∫ τ
0
dτ
′
∫ τ′
0

τ
′′(m2+1)

a1(τ
′ − τ ′′)dτ ′′, (46)

a2 = (i π g0)
2

∞∑
m1,m2=0

αm1,m2τ
m1+m2+6

,

αm1,m2
= αm1

m1+3∑
s=0

(
m1 + 3
s

)
Hm2

m2!(m2 + s + 2)(m2 +m1 + 6)
=

=
(−1)s Hm1

Hm2

m2!m1!(m1 + 2) (m1 + 3)(m2 +m1 + 6)
·
m1+3∑
s=0

(
m1 + 3
s

)
(−1)s

(m2 + s + 2)
.

(47)

Higher order solution: In the present nested procedure the nth order can be computed in a
modular way just looking at the symmetries of the expansion itself.

an = (i π g0)
n

∞∑
m1,..mn=0

αm1,..mn
τ

(∑n
r=1 mr+3n

)
,

αm1,..mn
= αm1,..mn−1

(∑n−1
r=1 mr+3(n−1)

)∑
s=0

( ∑n−1
r=1 mr + 3(n− 1)

s

)
·

·
(−1)sHmn

mn!(mn + s + 2)
(∑n

r=1 mr + 3n
) .

(48)
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Fel High Gain Equation
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Figure: Comparison between complete numerical integration with no
broadening effects (µε = 0) G(ν, 0) =|| a ||2 −1 with g0 = 5 at the
end time τ = 1, performed by Mathematica, and Hermite solution
G(ν, 0) = ‖a0 + a1 + a2‖2 − 1 at different truncation levels . 30 / 53
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Fel High Gain Equation
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(b) µε = 0.1, M = 25
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Figure: With different broadening effects G(ν, µε) =|| a ||2 −1 with
g0 = 5 at the end time τ = 1 and Hermite solution
G(ν, µε) = ‖a0 + a1 + a2‖2 − 1 at different truncation levels .

31 / 53



Silvia
Licciardi,
Ph.D.

Introduction

Special
Function

Cardano
Method

Umbral
Calculus

Fractional
Calculus

Fractional
PDE and
ODE

Physical
Applications

Further
Developments

l
Fractional Derivatives Theory

FELDτf(t) =

∫ τ

0

ξf(ξ)e−iν(τ−ξ)− (πµε)2

2 (τ−ξ)2

dξ (49)

Real Order Fractional Derivative (Integral) according to:

Caputo11

D̂α
x g(x) =

1

Γ(1− α)

∫ x

0

(x− ξ)−αg′(ξ)dξ , 0 < α < 1 (50)

Hadamard12

cD̂
−α
x g(x) =

1

Γ(α)

∫ x

c

(
log

x

ξ

)α−1
g(ξ)

ξ
dξ, x > c (51)

11Caputo M. Linear models of dissipation whose Q is almost frequency independent, Geophys.
J. R. astr. Soc., 13, 1967, pp. 529–539.

12J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, J.
Pure Appl. Math., 4(8), pp. 101–186, 1892.
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l
Fractional Derivatives Theory

FELDτf(t) =

∫ τ

0

ξf(ξ)e−iν(τ−ξ)− (πµε)2

2 (τ−ξ)2

dξ (49)

Real Order Fractional Derivative (Integral) according to:

Caputo11

D̂α
x g(x) =

1

Γ(1− α)

∫ x

0

(x− ξ)−αg′(ξ)dξ , 0 < α < 1 (50)

Hadamard12

cD̂
−α
x g(x) =

1

Γ(α)

∫ x

c

(
log

x

ξ

)α−1
g(ξ)

ξ
dξ, x > c (51)

11Caputo M. Linear models of dissipation whose Q is almost frequency independent, Geophys.
J. R. astr. Soc., 13, 1967, pp. 529–539.

12J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, J.
Pure Appl. Math., 4(8), pp. 101–186, 1892.
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l
Fractional Derivatives Theory

FELDτf(t) =

∫ τ

0

ξf(ξ)e−iν(τ−ξ)− (πµε)2

2 (τ−ξ)2

dξ (49)

Real Order Fractional Derivative (Integral) according to:

Caputo11

D̂α
x g(x) =

1

Γ(1− α)

∫ x

0

(x− ξ)−αg′(ξ)dξ , 0 < α < 1 (50)

Hadamard12

cD̂
−α
x g(x) =

1

Γ(α)

∫ x

c

(
log

x

ξ

)α−1
g(ξ)

ξ
dξ, x > c (51)

11Caputo M. Linear models of dissipation whose Q is almost frequency independent, Geophys.
J. R. astr. Soc., 13, 1967, pp. 529–539.

12J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, J.
Pure Appl. Math., 4(8), pp. 101–186, 1892.
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l
Fractional Derivatives Theory

Real Order Fractional Derivative (Integral) according to:

Atangana-Baleanu13

f
c D̂
−α
x g(x) =

1− α
f(α)

g(x) +
α

f(α)Γ(α)

∫ x

c

(x− ξ)α−1g(ξ)dξ

(52)
with f(α) function of normalization : f(0) = f(1) = 1. It exploits a generalized
Mittag-Leffler function and with a kernel not local and not singular.

Euler-Riemann-Liouville14

cD̂
−α
x g(x) =

1

Γ(α)

∫ x

c

(x− ξ)α−1g(ξ)dξ, α > 0 (53)

with g(x) is piecewise continuos on (0,∞) and integrable on any finite subinterval based
on the Lagrange rule for differential operators

13A. Atangana, D. Baleanu New fractional derivatives with non-local and non-singular kernel:
theory and applications to heat transfer model, Therm Sci, 20 (2016), pp. 763-769

14K.B. Oldham, J. Spanier; The Fractional Calculus: Theory and Applications of Differentiation
and Integration to Arbitrary Order, Mathematics in Science and Engineering, vol 111, 1974.
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Fractional Derivatives Theory

Corollary
Using the Euler-Riemann-Liouville definition for real order
derivative

D̂α
xx

ν =
Γ(ν + 1)

Γ(ν − α+ 1)
xν−α, ∀x, α, ν ∈ R, (54)

we finda

D̂α
x Eα,1(λxα) = λEα,1(λxα) +

x−α

Γ(1− α)
, ∀x, λ ∈ R,∀α ∈ R+.

(55)

aThe extra-term emerges because, according to Eq. (54), the fractional derivative of a constant
does not vanish.
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Properties of ML and Fractional Calculus

We note that En,1(λxn) is an eigenfunction of the ∂nx operator
∀x, λ ∈ R, ∀n ∈ N, therefore

Lemma

∂nx En,1(λx
n) = λEn,1(λx

n), ∀n ∈ N,∀x, λ ∈ R. (56)

It can be extended also to the case of real order ML functions.
In this case derivatives of non-integer order have to be
considered.
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l
Fractional Evolution Problem

Example

∀x ∈ R,∀α ∈ R+,∀t ∈ R+
0 , ∂αt F (x, t) = ∂2

x F (x, t) +
t−α

Γ(1− α)
f(x),

F (x, 0) = f(x),

(57)

defines a time-fractional diffusive equation.

According to the previous discussion, to the fact that the ML
”Eα,1(tα)” is an eigenfunction of the fractional derivative operator,
according to the definition (55) and considering the formalism
developed, we can obtain the relevant solution in the form

Solution

F (x, t) = Eα,1(tα∂2
x) f(x) (58)
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Pseudo-Evolution Operator

Definition

∀α ∈ R+,∀t ∈ R+
0 , Eα,1(t

α∂2x) is the pseudo-evolution
operator .

The relevant action on the initial function can be espressed as

F (x, t) =
1√
2π

∫ +∞

−∞
Eα,1(−tαk2) f̃(k) ei x kdk, (59)

where f̃(k) is the Fourier transform of f(x).

Proof.

F (x, t) = Eα,1(t
α
∂

2
x) f(x) =

1
√

2π

∫ ∞
−∞

Eα,1(t
α
∂

2
x)f̃(k)e

ixk
dk =

1
√

2π
·

·
∫ ∞
−∞

∞∑
r=0

tαr∂2r
x

Γ(αr + 1)
f̃(k)e

ixk
dk =

1
√

2π

∫ ∞
−∞

∞∑
r=0

tαr

Γ(αr + 1)
(ik)

2r
f̃(k)e

ixk
dk =

=
1
√

2π

∫ ∞
−∞

∞∑
r=0

tαr(−k2)r

Γ(αr + 1)
f̃(k)e

ixk
dk

(60)
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l
Time-Fractional Diffusive Equation Solutions
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(a) α = 1.5.
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Figure: Solution F (x, t) for f(x) = e−x
2 → f̃(k) =

e−
k2

4

√
2

, at

different times for different α values.

Behaviour not simply diffusive but also anomalous. Important role
in the description of processes called super or sub-diffusive.
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l
Time Fractional Schrödinger Equation

We solve the time fractional Schrödinger equation (FSE ) for a
physical process implying the emission and absorption of photons.
We assume that the relevant dynamics is ruled by the ML -
Schrödinger equation 15

iα ∂αt | Ψ 〉 = Ĥ | Ψ 〉+ iα
t−α

Γ(1− α)
| Ψ(0) 〉,

Ĥ = iα Ω
(
â− â+

)
, 0 ≤ α ≤ 1,∀t ∈ R+

0

(61)

where â, â+ are annihilation, creation operators satisfying the
commutation relation [â, â+] = 1̂ and the constant Ω has the
dimension of t−α.
If we work in a Fock basis and choose the ”physical” vacuum (namely
the state of the quantized electromagnetic field with no photons) as
the initial state of our process namely | Ψ(t) 〉 |t=0=| 0 〉, we can
understand how the field ruled by a FSE evolves from the vacuum.

15According to Dirac notation we write the state | Ψ〉 to indicate the function Ψ(t).
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l
Time Fractional Schrödinger Equation

The solution of our FSE therefore writes

| Ψ 〉 = e αd̂ t
α Ω (â−â+) | 0 〉 =

= e−
( αd̂ tα Ω)2

2 e−( αd̂ tα Ω) â+

e( αd̂ t
α Ω) â | 0 〉.

(62)

The use of the identities (â+)n | 0 〉 =
√
n! | n 〉 and â | 0 〉 = 0

finally yields the solution in the form

| Ψ 〉= e−
( αd̂ tα Ω)2

2 e−( αd̂ tα Ω)â+

| 0 〉 =

= e−
( αd̂ tα Ω)2

2

∞∑
n=0

(
− αd̂ t

α Ω
)n

√
n!

| n 〉.
(63)
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Examples

∀α, β ∈ R+

Iα, β =

∫ ∞
−∞

Eα,β(−x2)dx (64)

1 Iα, β = ĉβ−1
∫∞
−∞

1

1 + ĉ αx2
dx ϕ0 =

ĉβ−1
∫∞
−∞

1

1 + ĉ αx2
dx ϕ0 = π ĉβ−

α
2−1ϕ0 =

π

Γ
(
β − α

2

)
2 Iα, β =

(√
πĉβ−

α
2−1

∫∞
0
e−ss−

1
2 ds
)
ϕ0 =

√
π Γ

(
1

2

)
ĉβ−

α
2−1ϕ0 =

π

Γ
(
β − α

2

)
3 Iα,β =

∫∞
−∞Eα,β(−x2)dx =

∫∞
−∞ e−α,β d̂ x

2

dx ψ0 =

√
π
(
α, β d̂

)− 1
2

ψ0 =
π

Γ
(
β − α

2

)
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l
Examples on Fractional Hermite Operator

1) Non-perturbative treatment of the anharmonic oscillator16

J(a,b, c) =

∫ ∞
−∞

e
−(ax4+bx2+cx)

dx, Re(a) > 0 (65)

J(a, b, c) =

∫ ∞
−∞

e
−ĥ(b,−a)x

2−cx
dx =

√
π

ĥ
e
c2

4ĥ =

=
√
π
∞∑
s=0

1

s!

(
c

2

)2s
ĥ
−
(
s+ 1

2

) (66)

ĥ
−
(
s+ 1

2

)
= H

−
(
s+ 1

2

)(b,−a) (67)

I(γ, β) =

∫ ∞
−∞

e
−ĥx2

dx =
√
πĥ
− 1

2 (68)

2) Pearcey Integral used in Optics for diffraction problems17

J(1, x,−iy) =

∫ ∞
−∞

e
−(t4+xt2)+iyt

dt =

√
π

ĥ(x,−1)

e

− y2

4ĥ(x,−1) (69)

J(1, x,−iy) =
∞∑
n=0

(−1)n

n!
gn(1) [Hn(−iy,−x) +Hn(iy,−x)] (70)

16J. Bohacik, P. Augustin and P. Presnajder, "Non-perturbative anharmonic correction to
Mehler’s presentation of the harmonic oscillator propagator", Ukr. J. Phys. 59, 179 (2014)

17Jos L. Lopez and Pedro J. Pagola, arXiv:1601.03615 [mat.NA]. 44 / 53
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l
Bessel Functions

J0(x) = e−ĉ(
x
2 )

2

ϕ0
1 (71)∫ ∞

0
J0(x)dx =

(∫ ∞
0

e−ĉ(
x
2 )

2

dx

)
ϕ0 =

√
π

1

Γ
(
1
2

) = 1. (72)

f(x; a, b) := J0(ax)J0(bx), (73)

f(x;a,b) = e−(a
2ĉ1+b2ĉ2)(x

2 )
2

ϕ
(1)
0 ϕ

(2)
0 , (74)

f(x; a, b) =

∞∑
r=0

(−1)r

r!
lr(a

2, b2)
(x

2

)2r
,

lr(a, b) = r!

r∑
s=0

a(r−s)bs

(s!)2 [(r − s)!]2
.

(75)

1G. Dattoli, E. Sabia, E. Di Palma, S. Licciardi; “Products of Bessel functions and associated
polynomials”; Applied Math. and Comp., Vol 266 Issue C, 2015, pp 507-514, Elsevier Science Inc.
New York, NY, USA
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l
Plasma perturbation

Equation descrabing the evolution of magnetized turbolent
plasma

γ∂2t φ = ∂t∇2φ+ α(∂xφ∂y − ∂yφ∂x)∇2φ (76)

where φ is the electric field scalar potential with initial condition

φ(x, y, 0) = 0.01 +
1

1000
rnd(0, 1), ∂tφ(x, y, t) |t=0= 0.1,

γ = 0.0188, α = 1.

Mathematica - Fipy (object oriented, PDE solver, written in
Python)

∂tφ = ψ1

∂tψ2 = ∇2ψ1

∂t(γψ1) = ∇2ψ1 + α∂i(φΓij∂jψ2), Γij =
(
0 1
−1 0

) (77)
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l
Plasma perturbation

Mathematica: {Eq. (76) Explicit RK, Eq. (77) Perturbative
approach}
Fipy : {Eq. (77) standard finite volume}
Neumann Boundary conditions (= 0) and different examples of
initial conditions:

1) φ(x, y, 0) =
1

100
J0(6

√
(x− 1)2 + (y − 1)2)

2)

{
φ(x, y, 0) = 1 x, y > 1
φ(x, y, 0) = 0 x, y ≥ 1

3) φ(x, y, 0) =
1

10
J3(10x, 10y),

4) φ(x, y, 0) =
1

100
sin(10x),

5) φ(x, y, 0) = 0.01 +
1

1000
rnd(()(2− 1)).

(78)
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l
Plasma perturbations

Solution φ of Eq. (76) with i.c. 1
100J0(6

√
(x− 1)2 + (y − 1)2) and

0.01 +
1

1000
rnd(()(2− 1)), α = 1, Neumann b.c. = 0 and

∂tφ(x, y, t) |t=0= 0.1.
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Greetings

“Ovunque vi sia la minima speranza di successo,
esamineremo accuratamente le definizioni e i
metodi deduttivi proficui. Li coltiveremo, li
consolideremo e li renderemo spendibili"

..... David Hilbert

Thanks to all

Silvia Licciardi
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