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Stability analysis is considered to be of fundamental importance to allow operation of
plasma fusion devices and prevent bad confinement with consequent loss of plasma
performance and/or plasma wall damages. For these reasons a careful analysis of the plasma
stability properties for the DTT (Divertor Tokamak Test) machine [1] is undergoing. DTT is a
new facility. under construction in Frascati, Italy, whose aim is to design and test a divertor
able to face the problems of thermal loads and power exhaust. In this work the SN (single
null) scenario proposed for DTT is studied [2]: our attention is focused on low-n stability for
both ideal and resistive plasmas. Such analysis is part of a process where different codes
follow each other in a consistent chain: so. equilibrium analysis. which precedes stability,
follows the results of electromagnetic analyses (CREATE-NL, [3]) and transport analyses
(JETTO, [4]). The code used to study the equilibrium is CHEASE [5], a high-resolution fixed
boundary code that solves the Grad-Shafranov equation in toroidal geometry. assuming static
MHD equilibria and axisymmetry. MARS [6] is the stability code used. It solves full MHD
linear. resistive equations and can also consider a vacuum zone between the plasma last
closed surface and a perfectly conducting wall, which is conformal to the plasma last closed
magnetic surface. First the reference scenario is carefully analyzed: in this framework, the
relevant parameters are the safety factor on axis, qo=0.7. and at the edge. qos%=2.8. the q=1,
located around $=0.64 (being s the poloidal radial like coordinate), the p=1.9, defined as
2110<p>/Bo, being p the pressure averaged on the plasma volume and Bo the on axis magnetic
field. the pressure peaking approximately equal to 4. Studies with ideally conducting wall
placed at infinity as well as at finite distance have been considered. Moreover B and safety
factor profiles have been varied to perform a sensitivity study. The analysis reveals, for the
reference scenario, an unstable internal kink (m,n)=(1,1), and infernal modes localized around
the low shear and high pressure gradient zone. No external modes were observed unless main
quantities, such as the safety factor or the B parameter, are strongly varied.

[1] R. Martone. R. Albanese, F. Crisanti, A. Pizzuto, P. Martin. “DTT Divertor Tokamak Test facility Interim
Design Report, ENEA (ISBN 978-88-8286-378-4), April 2019 ("Green Book")” https:/www.dtt-
dms.enea.it/share/s/avvglhVQT2aSkSgVOvuEtw. [2] Casiraghi et al, Nucl.Fusion 61, 2021, 116068. [3] R.
Albanese et al., Fusion Engineering and Design 96-97 (2015) 664—667.[4] Cenacchi G. and Taroni A. 1988
ENEA-RT-TIB 88-5 ENEA. [5] H. Liitjens, et al., 97, Issue 3, 1996, Pages 219-260. [6] A. Bondeson, G. Vlad,
and H. Liitjens. Physics of Fluids, B4:1889-1900, 1992.
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Aim of the study

v’ Investigate, from a stability point of view, DTT scenarios
Different reference equilibria have been analyzed which have similar characteristic as concern
stability. In particular, the following analysis focuses on the reference scenario:
final_eqdskfile_PPFseq2196_DTT2021_02567.

Stability analysis is considered to be of fundamental importance to allow operation of
plasma fusion devices and prevent bad confinement with consequent loss of plasma

performance and/or plasma wall damages.

The scenario analyzed has the following characteristics:
* Single Null (SN)

Single Null
1,=5.5 MA
reference scenarig)

Double Null X-divertor Snowflake
lo=5 MA lp=4.5MA I,=4.5MA

2 L L s
1 15 2 25 3 35

Courtesy of R. Ambrosino (CREATE)
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e Positive Triangularity (PT)

e e | DTT main parameters
1 f Negative — a =0.70 m
Rp, =2.19m
05 | - B, =5.85T
l, =5.5MA
0l . Piot =45 MW
_ _ n, =2.410°m3
05 | - T, =15keV
' | T, =9.5keV
gl |
s b
0 0.5 1 1.5 2 2.5 3
R

* Full Power Scenario

A

" e 45 MW
D_QLO qu 1
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* MHD Stability analysis in this study focus on:

v" Mainly Ideal stability, indeed ideal MHD stability evolves on the rapid Alfven time
scale so that they can be catastrophic for plasma confinement

v' Resistive stability. Resistivity removes constraints from the ideal equation adding
new modes to stability scenario. Anyway, resistive instabilities generally grow on a
time scale much slower than the Alfven time. [R. White [1], G. Bateman [2]]



Codes used for the analysis:
MARS and CHEASE

equilibrium fields (B, B¥)
currents (/X J®)

Pressure p covariant metric tensor (g;)
Density current | in Fourier representation
i
CREATE NL i
Electrg - JETTO . L CHEASE MARS
magnetic : transport code : equilibrium code | . | Stability code
analysis | i /'
i 1 ¢
: :
| i i Perturbed fields
eqdsk: : : s Growth rate and frequency
! e . -
: .’ of the instability

General info (such as total current,
magnetic field, geometric radius,
magnetic radius)

Pressure p

dp/dy

Poloidal current flux function T

TTI

P

g profile
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Pprime=dp/dpsi

Equilibrium -> CHEASE

H. Litjens, A. Bondeson, O. Sauter [3]

The code solves the Grad-Shafranov equation in toroidal geometry

v —Vw——=—p(w)—

RZ

B=TV$+VxVy

p’(s)=dp/dy

S-MESH

T*DT/DPSI

TT (W)

TT'(s)=TdT/dy

0.04

0.035

0.03

0.025

0.02

0.015

0.01 |

0.005

7z (RZ 9),(p,8,9)

magn. axigJ

Pressure-> 1.05 Pa on axis
pressure peaking=p,/<p>=4
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Safety factor profile Surface averaged current density obtained by
CHEASE

q I*=<jphi/R>/<1/R>;10R0/BO

———— 35 —
| 0,=0.744 [
| Oegge=4-32 7
4| Qgge=2.84 .

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Stability analysis ->MARS
A. Bondeson, G. Vlad, and H. Lutjens [4]

It solves full MHD linear, resistive equations [ A. Bondeson, G. Vlad, and H. Litjens [4]].

It considers a two dimensional, axisymmetric general toroidal geometry carried out in flux
coordinate (s,x,$) where s=(1-{/U_ ..)/? is the radial-like coordinate, { is the poloidal flux
function, x is a generalized poloidal angle and ¢ is the geometrical toroidal angle.

It is a spectral code, that is, it solves the MHD equation in the Fourier space of the toroidal
and poloidal coordinates.

The s radial like coordinates is, instead, solved with the finite elements technique

It can consider a vacuum zone between the plasma last closed surface and a perfectly
conducting wall which is conformal to the plasma. This conducting wall can be placed on the
plasma surface as well.

Perturbed fields

Output relevant quantities Growth rate and frequency
of the instability



Summary of results obtained

Ideal modes revealed in the analysis:

* Internal kink (m,n)=(1,1), g=1 rational surface localized around a large
radius=0.6

* Infernal modes [Manickam [5]]from low to intermediate toroidal n and poloidal m
mode numbers, localized around the low shear and high gradient pressure zone. They
are pressure driven internal MHD instabilities that are excited in a region of low
shear.

Note that when profiles do not admit infernal modes, ballooning modes are considered the
most limiting modes, unless q,<1 in which case the n=1 internal kink may be more restrictive.

If infernal modes are present then a moderate n may be the most unstable, anyway this
value of n is profile dependent and the growth rate has an oscillatory behaviour with respect

to n and thus it is difficult to predict which mode number will be the most unstable.
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Resistive modes revealed in the analysis:

* Resistive internal kink (m,n)=(1,1).
* No evidence of tearing modes (m,n)=(2,1) or (m,n)=(3,2).

No external mode observed for this equilibrium

Sensitivity analysis on relevant quantities such as the q, and B show [Turnbull [7], Buttery [8],
Fasoli [9]]:

* Internal kink is switched on as long as the q,<1.

* Infernal modes are still revealed as long as the g rational surfaces are in a low shear
and high pressure gradient zone

* For g,>1 or high B, external modes have been found

Convergences test have been executed to confirm the analysis.



Stability analysis with MARS for the reference scenario: ideal study

v" A (m,n)=(1,1) internal kink is revealed with a perfectly conducting wall placed at infinite

v’ The plot shows the perturbed

velocity, radial component v5(s), of

the internal kink (m,n)=(1,1).

vs(s) radial perturbed velocity of the
internal kink mode with no radial
node, y1,=0.023 (rext=3.).

vs(s) radial perturbed velocity with
radial nodes, yt,=0.0026 (rext=3.).

v The growth rate decreases as the

number of radial nodes increases.
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Growth rate versus the wall position

v' The mode growth rate has a dependence from the conducting wall
position, meaning the mode contains an external mode component;
anyway it survives when the perfect conducting wall is placed on the
plasma surface that’s why it is named “internal” kink.

0.025 ———— .
v" Moreover the plot shows VA : . *° . i
that the difference, : ¢« o ° |
concerning the growth rate 0.02 | o« ° .
when a constant mass ¢ mass density with a profile
density is chosen, is e mass density constant ;
negligible and the 0015 |- ¢ i
qualitative behaviour is the ’ |
same.
: ]
0.01 [ i
v Thus, to simplify the analysis, a
constant mass density profile has , ]
been chosen from here on. 0.005 - i
O I . . ! . | ! ! . ! | . . . ! | ! .
1 1.5 2 2.5 3
rext=b/a
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v" No modes were found for n=2, 3, 5, 6, 9 stability analysis

v’ Stability analysis for n=4, 7, 8, 10 reveals the presence of infernal modes whose dominant
mode numbers are (m,n)=(3,4), (5,7), (6,8), (7,10)

As an example the
perturbed radial velocity for
modes number (m,n)=(3,4)
is shown;in particular the
main infernal mode with its
one node mode is depicted.
Note that the infernal
multiple nodes modes have
a lower growth rate with
respect to the main mode.

Note the presence of spikes

or steps around the rational
surfaces q=3/4

q=3/4=0.75@S-MESH=0.1

4.5 —

--------

q profile 1|

V*; 4(s) main

V®; ,4(s) one nodeYtx=0.

i
|

0.5 L——i

0 0.2 04
low shear region of q profile
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Infernal modes for higher n

4.5

35

vs(s) main
vs(s) one node

vs(s) two nodes

(m,n)=(5,7)
=

0.04 45

0.03
3.5

0.02
2.5

15|

(m,n)=(6,8)

0.5

0.4 0.6 0.8
S-MESH

0.02

0.015

0.01

-1 0.005

) (m,n)=(7,10)

S-MESH
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Infernal modes position on q rational surfaces

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005 |

Pressure

internal K

—— 19

0.2 0.4 0.6

------------------- S-MESH

low shear zone

0.8 1
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q profile

® (m,n)=(1,1) internal kink
® (m,n)=(3,4) infernal mode
® (m,n)=(5,7) infernal mode
X (m,n)=(6,8) infernal mode

® (m,n)=(7,10) infernal mode

v" The infernal mode is a
pressure driven internal
MHD instability, from low
to intermediate toroidal n
and poloidal m mode
numbers, that is excited in
a region of low shear.

v’ both conditions have to be
simultaneously fulfilled.
Indeed by setting p’=0, the
mode disappears



v The plot shows the oscillatory

behaviour of the infernal mode . n
. A
growth rate with respect ton 098 1 1.02 104 106 108 11 112 1.14
(as a continuous function); for 0.12 ‘H_.‘_H_"_H_‘._H_t‘_
this reason it is difficult to i A : |
predict which n value is the ! a I 1
most unstable. The same plot 0.1 II Sl
from Manickam analyses is I | T I
shown [J. Manickam [5]] i ‘ t ? |
0.08 |- . + -
v" Ared dot, which represents g f | . 1
the internal kink growth rate, S 006 |- ‘ i
is reported for comparison. g i i | .
e N
i . | .
0.04 |- ! | ]
0.1 T T T T T T l ? I
(a) e f ‘ :
. L Jo.02 - LK | s
et ’ } L internal kink s f ]
o A 4 f 'u\ | v ]
o [ 2 3 405 6 7 8 O lL—1 i
J. Manickam, 1987 Nucl. Fusion 27 6.5 7 7.5 8 8.5 9 9.5 10 10.5
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Stability analysis with MARS for the reference scenario: resistive study

* Resistive internal kink (m,n)=(1,1) found. The plot shows the growth rate vs 1/S for such mode.
1 r

T | ? S=rR/ercl Lundquist number
I | n

To = 1,a*/n Resistive diffusion time

T,=Ry\ 1P, /B¢ Alfven time

0.1 |

Y ....“_

- ¢ 0000
® ® © o 000000 o o0

0.01 3 1 Inthe plot, the growth rate for the

internal kink is barely affected by
resistivity. Indeed the growth rate is
0.0235 for the ideal case.

Moreover in DTT 1/S is around 10-10-

0.001 _—

107 10° 10” 0.0001
1/S

* No tearing modes revealed. Mesh size densified around significant rational q surface to
show modes in thin resistive layer.rusco - wip 28 February 2022




Sensitivity analysis varying i)q,=q,,; and ii)B

exp

v’ Other quantities, such as total current |, g.q...., profiles, are kept constant .

S

i)

i)

v

IR -

original
q_1
q_3
g_3_bis

5.489
5.487
5.327
5.315
5.131

0.74
0.82
1.10
1.3
1.5

2.8450 4.3211
2.8747 4.0016
2.9072 3.999

2.9636 4.0067
2.9965 4.0087

1.89
1.866
1.803
1.675
1.606

.

-mm O .

original
0.5p0
1.5p0
2p0
2.5p0

5.489
5.505
5.475
5.459
5.444

0.74
0.75
0.71
0.69
0.67

2.8450

2.82 4.2
2.87 4.4
2.90 4.5
2.93 4.6
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1.89
0.0096
2.81
3.72
4.64

1.20
1.191
1.328
1.263
1.086

1.20
0.73
1.81
2.43
3.04

/

From CHEASE:
B.%=2.16493087

Bexp%=1.89007615

B,=1.20398

1/2

2u(<p* >)

/3*%= 2
BO

o %=t




i) Sensitivity analysis on q,=q,,;.

w1
New analytical g, keeping the profile shape and the g, fixed: Gy (8) = (5) 1+k(e ‘—)

e
e
Qprofile |from eqdsk original k = qoﬂ—l —
—— Qprofile | ¢ _1 new nOjedge0 p=1 q e—1
— Qprofile [ q 3 new n0jedge0 p=2 0
Qprofile |q 3 bis new nOjedge0 p=3
; *
p=3 |
S 3.5
4 |

0.5 f

e ——— o b

8 1
. Fusco - WIP 28 Februa% 2022 02 0.4 S_MESH0~6 0.8 1

. 0
S-MESH \



Positions of the infernal modes, internal kink
and external modes on the different safety

factor q versus the s

External modes
~

_Infernal modes |

Internal kink

0 0.2 0.4 0.6 0.8

S-MESH

0.14

0.12

0.1

0.08

0.06 |

0.04

0.02

Growth rate vs n
m are reported as well

— ] ] | |
BT i
m=7 |
i ®
[~ m=6 |
m=5
°
°
m=3
°
i'nternal kink m=4  infernal modes
i V m=2 M=3 m=3 m=5 m=6
i (] m=7
I H _ _
[m=2 o o $ ° m=5 m=6 |
m=2 o .
external modes * o
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MHD stability analysis g 3 bis

Qprofile [from eqdsk original . 6 dsk original
—¥— Qprofile | g 1 new n0Ojedge0 — [-STAR=<jphi/R>/<1/R> | from_eqdsk_origina
— Qprofile [q_3 new_nOjedge0 —— [-STAR=<jphi/R>/<1/R> | q_l1_new_n0Ojedge0

Qprofile |q_3_bis_new_n0jedge0 —— [-STAR=<jphi/R>/<1/R>| q_3_new_n0jedge0

Qprofile | q 4 new nOjedge0 — [-STAR=<jphi/R>/<1/R> q_3_b1s_neW._nOJedgeO

- —— [-STAR=<jphi/R>/<1/R> | q_4_new_n0Ojedge0
3.5 - T - - - T T
3 L
\
2.5 F
2 | \
1.5
1 [ \\
| \\
0.5 B \
N R O_"“"“"“"“

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
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No internal kinks, no infernal modes up to n=10.

Only an m,n=2,1 mode is revealed; it is an external mode as the following picture shows

0.014 ‘

0.012 |
0.01 —
0.008 |
0.006 |
0.004 —

0.002 |

1.5

2.5

rext=b/a

3
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Sensitivity analysis on i)

I VN C O C R

- original 5.489
—— 05p0  5.505
——  15p0  5.475
— 2p0 5.459
S 2.5p0 5.444

It results, as expected, very 9 |

4,

small changes on q
profile...

exp

0.74 2.8450
0.75 2.82
0.71 2.87
0.69 2.90
0.67 2.93

4.3

4.2
4.4
4.5
4.6

.

Poo [N

1.89 1.20
0.0096 0.73
2.81 1.81
3.72 2.43
4.64 3.04

5

{ whilst the pressure changes...



As for the nominal case, internal kinks and infernal modes are revealed; the infernal modes
position on q only sligthtly changes, because the q profile is almost untouched.

0.3
T
Pressure Tta i
0.25 ®
0.1 :
— original p, |
008 | —— p=0.5p0 | 02} ,
B ® m=
’ —  P=1.5p0
0.06 i p=2.p0 10.15 infernal modes
i p=2.5p0 1 I m=1 m=2 m=3 m=4 m=5 m=6 m=6 m=7 |
i 1 internal kink
0.04 | 1 0.1 Y
i | i °
i ] $ ° ¢
, ] °
0.02 10.05 | ] .
| | \ :
[
| [ | '
0 P T N T U WA RN W S SR [ S S S R R S 0 \? w | | s | ! ‘ ! ?
0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 6 7 8 9
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m,n=2,2

5 T T T T T T T T T ! ! ! ! ! ! 0.002
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Conclusions

v’ A stability analysis has been performed from low to intermediate toroidal mode number n

v’ for the reference scenario
Internal kink (m,n)=(1,1) exists localized at a large radius

Infernal modes localized around the low shear and high gradient pressure zone are
revealed. This analyses shows that such modes have higher growth rate than the internal
kink, anyway the oscillatory beahviour of the growth rate with the mode number n makes it
difficult to predict which n is the most unstable mode [6,7].

v' varying q, and B

exp
An internal kink (m,n)=(1,1) does exist as long as q, <1
Infernal modes localized around the low shear and high gradient pressure zone are revealed.

When g, >1 low-intermediate infernal modes disappear and (m,n)=(2,1) external mode
appears.

When the B, % is changed, q profile remains unperturbed thus the internal kink (m,n)=(1,1)
is still unstable. Infernal modes are also revealed. As long as the pressure is increased
(m,n)=(2,2) external mode appears.

v' Resistivity, in this scenario, doesn’t change the modes pictures



Work in progress

e Characterization of low n MHD modes using HYMAGYC code (hybrid MHD -Gyrokinetic
code developed in Frascati)
-> towards adding kinetic effects
->use of the FALCON code (developed in Frascati) to characterize the Alfven continua

* JALPHA Workflow has been already used to study the so called peeling-ballooning modes
which are medium-to-high n ideal MHD modes, localized at the outermost plasma region.
No modes were revealed. The equilibrium and stability codes used were HELENA and ILSA
which are compatible with CHEASE and MARS; these codes uses a more convenient
curvilinear geometry metrics thus they are prone to be inserted in the workflow.
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CHEASE and MARS

The equilibrium code used is CHEASE [H. Litjens, A. Bondeson, O. Sauter [3]], a fixed
boundary code that solves the Grad-Shafranov equation in toroidal geometry, assuming
static MHD equilibria and axisymmetry.

R2V1/J——=—p(w)— TT(I/J)

Poloidal flux W

Metric tensor for different stability
Output relevant quantities | codes

Equilibrium fields:

e B=TV¢+VoxVy

cocos=2 '>(R;Z; ('p)l (p;e;(p)
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MARS

Resistive spectral code for full MHD linear stability analysis

Two dimensional, axisymmetric general toroidal geometry carried out in

flux coo
where

rdinate (s,x, o)

s=(1-g/Y.,;)/? is the radial-like coordinate,

) is the poloidal flux function

X is a generalized poloidal angle which depends on the choice for the Jacobian*
¢ is the geometrical toroidal angle.

(Dl
i

L=co

VY= cons

magn. axis_|

~N -\

* J= C(W)RNEGP| gradW | NER

6 Rop(d) -
x(8) 9p5(0) .
o JOoV/do
NER =2 | NEGP =0 | J; o< R? —> “Princeton Jacobian”

NER =0 | NEGP =0

Jy o< Constant

— “Hamada Jacobian”

NER =1 | NEGP = -1

Jy ox R/|V|

—> “Equal arc length Jacobian”
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The choice of the Jacobian have consequences on the x mesh:

{a)

L 1 3 \ “'\‘
T | TN L

i

; il
v . b

TN
% ’/.,‘;;.‘,\‘\\\‘."l,”'ff;’-;f, '.

Fi6. 2. Equally spaced (y, ) meshes for (a) PEST, (b) Hamada, and (c) equal arc length coordinate
system for the equilibrium of Eq. (27) with R =1, E=1/2, g = 1.2, gy, = 2.1.
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The equilibrium fields (BX, B®), currents (J% J*) and the covariant metric tensor (g;) are
supplied in Fourier representation by the equilibrium code Chease

The perturbations of velocity, magnetic fields and current density are represented as

JOV'VxxVo+v'VeoxVs+v'Vsx Vy)

X:
b=b'VyxVp+b'VoxVs+b’VsxVy
j= 'VyxVo+j"VexVs+ j*VsxVy

MARS decomposes in Fourier the poloidal and toroidal angular variation:

Vs, x,9) = e E v (5)e™* VE(s, X, 9) = e E V¥ (s)e™* v? (s, %,0) = e E v,‘i (5)e™*

m=my m=my m=my

b*(s, x,9) = e E b, (s)e™*

m=my

The discretization in s uses the finite element method (FEM) piecewise linear and piecewise
constant (integer grid and half grid respectively).



[A/m™2]

44 Jz tot

-110°
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— 44 Jz tot[A/m"2]
— 45 Jz BS[A/m"2]
— 46 _Jz NBI[A/m"2]
— 47 Jz ECH[A/m"2]

From JETTO
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Reference scenario
Internal kink (m,n)=(1,1) with the others m components

X 10_
0.8

0.6

— real

0.4

Vv

0.2

SQRT(V/ Vsure)
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Infernal Mode m,n=3,4

0.02

SQRT(V/ Vsure)
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External mode m,n=2,1q_3_bis

0.0025 [~

= O
>
(-
|
—0.0025
>

—0.005 -

SQRT(V/Vsure)
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External m,n=2,2 p=2.5p0
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>
| _—
5 0.001
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—0.001
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Convergences test: mesh size

MARS results has been validated with convergences tests

’YTA 0.024 ! ! ! ! ! ! ! ! ‘ ! T ! ! ‘ ! T T T ‘ T T T T ‘ T T T T
Vaps..=0.0238 | ———y =0.023836 - 67.63x R=0.99158
* The elge'nvalue.converges 0.0238 | <.+ NPSI=760 .
guadratically with the mesh
size: Ay=1/NPSI ! NPSI=560
« When NPSI=360 (mesh size in 0.0236 - -
), the error is within %. D A NPSI=460
Ay vy 0.0234 .
—L0f = L_LNESI=e o, D " SRR NPSI=360
r e |
35 NPSI=180 0.0232 |
3 |
25 0.023 | NPSI=‘1‘8O
, . <€+ NPSI=360 i 2
o
5| ... NPSI=460 !
00228 L i i e v v v 0 LN
1|+ .. NPSI=560 0 510° 110° 1510° 210° 2510° 310° 35107
0.5 1/NPSI™2
¢ - NPSI=760
0

| —
0 510° 110° 1510° 210° 2510° 310° 3510° V. Fusco - WIP 28 February 2022
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MARS sensitivity studies: spectral components

Sensitivity analysis on the spectral component m,, m, for n=1

V(s g =e" Y v, ()"

m=ny

® NPSI=360
o NPSI=460

In these simulations m,=-5
and m,=15 has been chosen
(21 harmonics).

YA

0.03 —

0.025

0.02

0.015 L

Scanning in lower m

Scanning in higher m
* lower edge m fixed

* higher edge m fixed

\ —r . = . 1 1
| m,=15 m,=-5
V(s p) =™ Y V()" V(s ep) =" D vl (s)e™
[ m=-m, . m=-3

o ® °
s$88888g g$gs?t
/ s /'

-5 15

20 -10 0 10 20 30
42
m, m,



Table 2
PF Comparison among DTT, ITER and DEMO [30] main parameters.

DTT ITER DEMO
R (m) 2.19 6.2 9.1
a (m) 0.70 2 2.93
A 3.1 3.1 3.1
Ip (MA) 5.5 15 19.6
B (T) 6 5.3 5.7
Heating Py (MW) 45 120 460
Poep /R (MW/m) 15 14 17
lq(mm) 0.7 0.9 1.0
Pulse length (2) 100 400 7600
Table 1
Reference DTT physical parameters.

ne 10 m™) 1.8

n./ng 0.42

Pror( MW) 45

Tg(l) H” =1 0.43

Te(keV) 6.1

p(9%) 2.2

v (107%) 2.6

£*(10-%) 2.9
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