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Termination phase

@ The capability to terminate plasma pulses safely is an important goal towards the optimization
of an operating scenario in a tokamak.

safety _ thermal and electromagnetic loads
" on plasma facing components
Disruption - .
_limits to the range of accessible
scenario " plasma parameters

@ It is of great importance to study the physical phenomena involved in the disruptions and to
develop disruption precursors for avoidance or mitigation actions.

flat-top _ TM (m/n) triggered by sawtooth crashes, fishbone
activity and perturbations associated to ELMs
Tearing modes
TM (2/1) in presence of an increased radiation
» emission in core or edge plasma, leading to
termination

and edge cooling, respectively
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Increased radiation emission in core or edge plasma )
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@ Tomographic reconstructions of the plasma radiation profile and electron temperature profiles
from ECE radiometry for two pulses characterized by an increased radiation emission in
(JPN 96996, top) and edge (JPN 92211, bottom) plasma, respectively.
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Tearing modes
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@ Tearing modes (2/1) without evident external triggers are observed in the termination phase
of disruptive pulses in presence of an increased radiation emission in core or edge plasma,
leading to temperature hollowing and edge cooling, respectively.
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Temperature hollowing ®
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Edge cooling
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Destabilization mechanism {,f?}}

@ The destabilization of a classical tearing mode is driven by the radial gradient of the toroidal
current density profile:
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zero pressure limit

O In the termination phase the current profile is dominated by the ohmic contribution and the
resistivity is high due to the low temperature:

77 £ Zeﬁ" /7;3/2

(O The current profile changes on a relatively short resistive diffusion time scale reflecting
the changes in the electron temperature profile:

Tr = /,IOLZ/ﬂ

(O The possibility of 2/1 tearing modes linearly destabilized by changes in the current density
profile has been explored.
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Broadening and shrinking of current density profile
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@ Qualitatively, both
and edge cooling can destabilize a 2/1
tearing mode as a consequence of an
increase of the current density gradient
near the mode resonant surface:
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TRANSP simulations @*‘;

@ Interpretative TRANSP simulations carried out for the two pulses mentioned before:
JPN 96996 ( ) and JPN 92211 (edge cooling).

O Electron temperature and density profiles as measured by high resolution Thomson scattering,
plasma equilibrium evolved by the internal inverse solver and current density profiles calculated
according to the poloidal field diffusion equation, with classical Spitzer resistivity.
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(O Changes in current density profile reflect the expected evolution following changes in the
electron temperature profile, with time delays associated with the effective resistive diffusion
time: for JPN 96996, 50-100 ms for JPN 92211.
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Linear stability analysis &)

@ Linear stability criterion in the zero pressure approximation:
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(O Time evolution of the linear stability parameter A’ calculated by solving the equation for the perturbed
radial magnetic field in toroidal geometry neglecting pressure effects.
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(O Aniincrease of A’ is obtained. Assuming the neglected stabilizing contributions to be not increasing,
being proportional to fand 1/5, an ongoing destabilization process can be claimed.
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Recurrent paths (®

@ Although a rigorous classification of all possible paths leading to the onset of 2/1 tearing
modes is not the goal of this work, some recurrent typologies can be identified:

Spontaneous onset

Temperature
hollowing
of the current
Reconnection event density profile
Hollowing, but final collapse from edge Shrinking
of the current
Edge cooling Onset with peaked temperature profile density profile

(O The formation of an outer radiating blob due to impurities accumulated in the low filed side can
also be responsible for an edge cooling.
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Temperature hollowing and edge cooling parameters )
\=

@ Following the picture of tearing modes generated by changes in the current density profile
reflecting the changes in the electron temperature profile, two parameters are defined, from
ECE radiometry, to highlight the occurrence of edge cooling or temperature hollowing:
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Temperature hollowing and edge cooling parameters )

@ TH and EC parameters for the two pulses mentioned before:

JPN 96996 pulse characterized by temperature hollowing
JPN 92211 pulse characterized by edge cooling
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Non-disruptive and disruptive pulses

@ Time evolution of EC and TH parameters for a dataset of 268 pulses (136 non-disruptive,
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132 disruptive) carried out at different plasma current values (2.5 — 3.7 MA) in the baseline

scenario at JET in the period 2016-2020.
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(O Non-disruptive pulses are generally devoid
of temperature hollowing and edge cooling,
with stable values for both parameters TH
and EC (10% false positive).
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Empirical stability diagram

@ Paths of representative pulses on an EC-TH plane.
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Characteristic time scales: mode lock and disruption {j}
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@ The time corresponding to the mode lock has been used as a reference as it is related to the
mode growth up to a given amplitude.

A 4

136 non-disruptive

\ 4

Full dataset 2 ST triggered

268 pulses

\ 4

\4

132 disruptive 66 Edge Cooling

64 Temperature Hollowing w/wo EC

v

30

Mode lock -> disruption

unmitigated
disruptions

N
o

low amplitude lock modes
soft disruptions

/

0,0 0,1 0,2 0,3 0,4 0,5
tdisr B tML (s)

number of cases
S

O The time from mode lock to disruption can
vary from few milliseconds to hundreds,
depending on the mode dynamics and on
the logic of the mitigation actions.
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Characteristic time scales: TH and EC @?}}

@ The distributions of the time interval between the increase of the parameters EC and TH and
the mode lock have been evaluated for the 132 disruptive pulses.
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(O The parameter EC could provide alerts falling
within 200 ms from the mode lock, namely
not sufficient to correct the termination but
enough to anticipate mitigation actions.
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(O The parameter TH could provide alerts up
to 2 s from the mode lock, so an attempt
to correct the termination avoiding the
disruption is possible.

G. Pucella | ENEA-WIP | 04.04.2022 | Page 18



Avoidance and mitigation actions (®

@ Re-establishing temperature profiles peaked in case of core impurity accumulation, e.g.
providing central additional heating to counteract the inward transport of high-Z impurities,
is a strategy to avoid disruptions due to temperature hollowing.

(O The additional power has to be carefully calibrated to avoid the onset of tearing modes triggered by
long-period sawtooth crashes.

@ Gas injection into the tokamak, leading to a fast loss of thermal energy by photon radiation,
is a strategy to mitigate disruptions due to edge cooling.

(O Mode saturation is quite general for EC in
peaked Te profile and usually the thermal —> not crucial to anticipate DMV
quench is induced by DMV intervention

(O An explosive growth of the mode amplitude
occurs for EC in hollow Te profile, leading in —> crucial to anticipate DMV
some cases to unmitigated thermal quenches
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Conclusions (®

@ Tearing modes without evident external triggers are observed in the termination phase of JET pulses in
presence of an increased radiation emission in core or edge plasma leading to
and edge cooling, respectively.

@ Linear stability analysis have shown that both cases can lead to the destabilization of a 2/1 tearing mode,
as a consequence of an increase of the current density gradient near the mode resonant surface, due to
a of the current density profile in the case of temperature hollowing and to a shrinking in the
case of edge cooling.

@ Two parameters have been defined, from ECE radiometry, to highlight the occurrence of temperature
hollowing (TH) and edge cooling (EC) and the time evolution of such parameters has been studied for a
large dataset of pulses, to highlight the correlation with mode onset in plasma termination and to evaluate
the characteristic times interval between the increase of such parameters and the mode lock in disruptive
pulses (~ 1 s for TH, ~ 100 ms for EC).

@ The possibility to obtain lock mode precursors based on the two parameters TH and EC has been
preliminary explored, showing that the parameter related to the temperature hollowing could provide alerts
useful to attempt to correct the termination avoiding the disruption, whilst the parameter related to the
edge cooling could provide alerts useful to anticipate mitigation actions.
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