Analysis of Runaways Mitigation in JET
with Shattered Pellet Injection

Paolo Buratti
paoloburatti2z@gmail.com

WIP 21/06/2022



Shattered Pellet Injection (SPI)

* Pellet criogenico frammentato per aumentare la superficie
di interazione col plasma

e Convertire I'energia del plasma in radiazione per alleviare
Il carico termico nelle disruptions

* Mitigare i fasci di runaway electrons (RE) eventualmente
prodotti durante le disruptions

» Diverse dimensioni e diversi dosaggi di D,, Ne, Ar
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Visual: big Ne shattered pellet
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Esperimenti di RE safe termination al JET

PHYSICAL REVIEW LETTERS 126, 175001 (2021)

Demonstration of Safe Termination of Megaampere Relativistic
Electron Beams in Tokamaks

Cédric Reux®

* Disruption (indotta da Ar Massive Gas Injection) che
trasferisce parte della corrente di plasma ad un fascio di
runaway electrons

* SPI per ottenere la safe termination del fascio

e Safe = senza provocare evidenza riscaldamento della
parete sulle termocamere all’infrarosso.
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Esperimenti di safe termination al JET (2)

MGl SPI

1.5 — —

4 '1 — #05125-No SP| == #95133-SP| Ar === #95135-SP| D2 (a) 1

E B i I .
= I : pla I
= 05F {\ _
D I | ) ) ) ) | ) ) . . 1 ] . ! ! . ] \ . . ] . . . 1 . . |

time from thermal quench [s]

e Safe termination in verde

* Ricomparsa di plasma termico durante il collasso finale
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Esperimenti di safe termination al JET (3)
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* |n assenza di SPI| o con SPI ad alto Z il carico sulla parete
e importante e aumenta con la corrente

« Safe termination ottenuta con D, SPI fino a correnti del
fascio runaway > 1MA
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Esperimenti di safe termination al JET (4)
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Analisi di dettaglio

* L’ Electron Cyclotron Emission aumenta in risposta
all'iniezione di shattered pellets di Deuterio: da spiegare
(spiegazione nel seguito)

e Siosservano bursts di attivita magnetica da interpretare:
Instabilita cinetiche tipo anomalous Doppler, 0 modi
MHD? (la seconda)

e Sj osservano strutture island-like rotanti nei filmati di
emissione di sincrotrone: ricerca di correlazioni con la
magnetica (lavoro non competato).
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Outline (®)
* ECE spectra variations in response to
MGI and SPI

* A toy model for ECE spectra and its
results

* Fast transients and their interpretation



ECE response to MGI and SPI (®
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ECM1 T, , analysis ©
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ECM1 T, , analysis ©
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ECM1 T, , analysis ©
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ECM1 intensity analysis
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* Use full 30-500 GHz spectra from KK1 interferometer
* Intensity is power per unit frequency, solid angle, area
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ECM1 intensity analysis
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ECM1 intensity analysis C
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Evolution of ECE spectra
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ECE evolution at 146 and 410 GHz @)
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ECE evolution at 146 and 410 GHz (®

400 — 595135 ECM1/CsSPC

95135: overshoot Seq=74 (0)

J00
% T X[32]=1.46382e+11
g 200
100 — 95135 ECM1/CSPC
Seq=74 {Clj
0 . XK[104]=4.09B69e+1 1
300 — 95137 ECM1/CSPC
Seq=74 (0)
£ 200 X[32]=1.46382a+11
= »
- 95137: No sign of SPI

100 — 95137 ECM1/CSPC

T —

e Seq=74 (0}

DE ; ; i — H[104]=4.09BE6G8+1 1
25[!';‘— _E - 85775 ECM1I,.-'rCSFI:
200 - E Seq=85 (0)

& E 3 ¥[32]=1.463822+11

2 150 3

E 100F E

- g E ——— 85775 ECMA1 /CSPG
=0 3 E Seq=85 (0)

OF ; ; - = K[104]=4.0086%e+11

400E" E ———— 95776 ECM1/CSPC
>~ 300 Seq=82 (0)
X[32]=1.46382a+11
2 200 [32]
=
=
100 ——— 95776 ECM1/CSPC

o Seq=382 (0)

48.0 48.5 9.0 X[104]=4.09B69a+11

SECONDE
P. Buratti | VVIF 21/Ub/2UZZ | Page 21



ECE evolution at 146 and 410 GHz @)
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ECE spectra after collapse
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ECE - IR camera comparison
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Synchrotron emission toy model «

* Synchrotron emission is a strong function of wave
field variation across the Larmor orbit:

0, .
kipp = —Nsinfp,
w(‘(’.'

* Where the refractive index N = kc/w and 6 = «(B,Kk)

* Emission increases throughout the spectrum for
Increasing p.

* Emission decreases if N(w, 0, B,n,) decreases



Refractive index

B = 3, x-mode,
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* As density decreases, the refractive index increases and

the cutoff shifts to the left
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The toy model
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* Not-too-dense beam in a cold background plasma:
optically thin emission

* Sum emission by individual RE dressed by the
background plasma density

* The emitting region length is enhanced by multiple
wall reflections

* Uniform, dispersive but not absorbing background
plasma

* Uniform magnetic field

* Assume a population of identical RE



\
z

Wall reflections

{
L=

E " LR Y First reflection
£ OF A : | R -"CLLEL o

T | e Direct

I

* If the plasma is optically thin, emission is enhanced by multiple
wall reflections

* The effect is equivalent to increasing the length of the emitting
region

* The enhancement could be estimated from analysis of thermal

emission at the third harmonic
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The toy model ©

* Power from an electron per unit frequency and solid
angle:
dP,

dw d€2

— ”J_r(wa 0, p. W ces wpe)
where + indicates polarization mode

* ECE measures intensity averaged over the angular
response yy(6)

* For a population of identical electrons

I, =ngel /w(@) 1,.dC2

where [/ is an effective path length given by the beam
diameter divided by w(0).



Dressed emission (®
2 d(wN..) 2
e“w w .

I, = nggl 2 w(b,) N, = p |E; F;'MF

4R€0 Cﬁz " dw E_,;E-*—(wze‘ﬁ)
/ / aw/,
Refractive index /;ielectric tensor
Polarization vector
JJES nw{.‘{:’ . !

E; '™ = E, —Ja(kipr) —iEy pil (kip) + E. p ). (kipr)

ywN, sin 6

Al quantities calculated at 8, given by

1 )
N, (6,)cos 6, = ﬁ—(l _ ”‘5"“*)

Y@

=

A
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ECE angular response and units @

* Lorentzian model for the angular response [(x) = 1
T X

L((O — 7/2)16)

) =
O [ L((6 — =/2)/6)dQ

* Sum polarizations assuming that wall reflections
scramble them

* and use ECM1 units: pW instead of W and Hz instead

of rad/s

1012
Iecv = g(h + 1)

* The toy model is available as a Jupyter (.ipynb) notebook
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ECE spectra

* Population of identical RE with p=8 and large (0.9)
pitch angle
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* Density scan: spectral shape changes dramatically

* From "MGI” to “SPI" shape as density decreases.
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ECE spectrum calculation (®)
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ECE from low-energy electrons
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p=0.97 (200 keV) & reference case
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1 —8— p=0.97, a=0.7, B=3
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40 60
Background density (E19)
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* Power per electron in the reference case (prev. slide) changes
from 5.5 to 3.5E-12 for a density variation from 0 to E21

* The relative variation is much larger at lower electron energy

(shown 200 keV case) but ...
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ECE from low-energy electrons
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* ... but calculated ECE spectra for 200 keV do not resemble
measured ones, in particular intensity strongly decreases with

frequency above 300 GHz.
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ECE from high-energy electrons
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* Electron parameters typical of synchrotron emission in the

VIS: 25 MeV, pitch angle = 0.15

* With this, emission is reduced by two orders of magnitude,

due to forward radiation beaming
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ECE - IR camera comparison (©®)
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Fast ECE evolution
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fast response to SPIét 127.8 and 163.6 GHz from KK3F
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ECE response time from KK3F ©
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* 5-10 ms duration of ECE increase after SPI
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ECE and MHD spikes
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Fast ECE evolution
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ECE and MHD spikes ©
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* ECE spikes are only visible in channels close to the x-mode
cutoff, like the one at 127.8 GHz.
* Most likely this is an effect of changes of the background density,

and not of the RE distribution.
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Summary

o=\

* ECE at low frequencies dramatically increases
with SPI.

- ECE increase is compatible with a strong
reduction of the background plasma density

- The change takes place in 5-10 ms

* Fast transients are captured by ECE and HFS
colls

- Transients appear as cutoff variations (due to
gas release caused by MHD instabilities) and
not as pitch-angle-scattering events.



ECE vs popular synchrotron formula )

dP/dA (W / m)

dp,

C€2

d2 /3y p2 23

p=>50; pitchangle=0.1; B=3

: r‘pﬁ%eq —&— sum harmonics
1077 - P ""’en Schwinger limit
5 @ b
10-¢{ ¢ "o
] ]
] o k“e
1079 %
i 9 o
-10 ] a
10 i ¢ \'i’*-" N
10-11 4 e
10-12-;
10-13
10-14-:
10-° 10~ 1074 10~ 1072
Wavelength (m)
dP 2z c dP 23: c
5 /.
i a2

= 47 R
/ Ks;3(z)dz A, = ENE)
Al e

Agreement in IR and
visible range (used as
a benchmark)

Deviations in the 30-
500 GHz range,
where the Schwinger
approximation fails
because individual
harmonics do matter.
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