

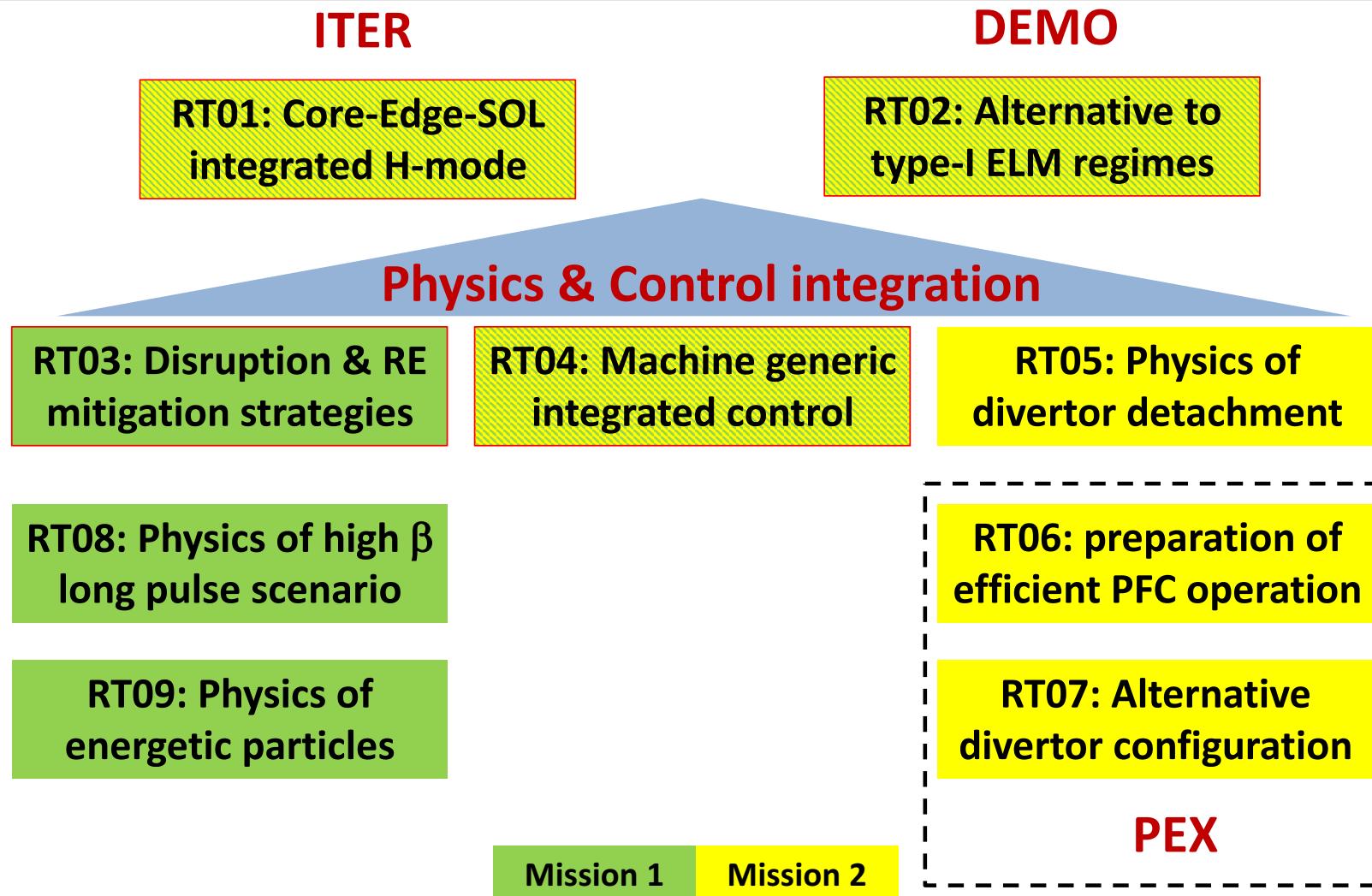
Risposta Italiana a WPTE call 2022/23

11/07/2022

M. Baruzzo, N. Vianello

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

WP Organization: Changes undertaken for 2022/2023 programme in D


2021 → 1st half 2022

Research Topics	
RT1	ITER Baseline scenarios towards low collisionality and detachment
RT2	H-mode entry and pedestal dependence with impurities and isotopes
RT3	RF-assisted breakdown and current ramp-up optimization
RT4	Disruption avoidance and control for ITER and DEMO
RT5	Run-away electron generation and mitigation
RT6	ELM mitigation and suppression in ITER/DEMO relevant condition
RT7	Negative triangularity scenarios as an alternative for DEMO
RT8	QH-mode and I-mode assessment in view of DEMO
RT9	Extension of EDA and QCE performance towards DEMO
RT12	Development of the steady state scenario
RT10	Fast-ion physics with dominant ICRF heating
RT11	Impact of MHD activity on fast ion losses and transport
RT13	X-point radiation and control
RT14	Physics of plasma detachment / impurity mix/ heat load patterns
RT15	Extrapolation of SOL transport to ITER and DEMO
RT18	Alternative divertor configurations
RT16	PFC damage evolution under tokamak conditions
RT17	Material migration and fuel retention mechanisms in tokamaks

2nd half 2022 & 2023

Research Topics	
RT1	Core-Edge-SOL integrated H-mode scenario compatible with exhaust constraints in support of ITER
RT3	Strategies for disruption and run-away mitigation in support of the ITER DMS
RT4	Physics-based machine generic systems for an integrated control of plasma discharge
RT8	Physics and operational basis for high beta long pulse scenarios
RT2	Physics understanding of alternatives to Type-I ELM regime
RT9	Physics understanding of energetics particles confinement and their interplay with thermal plasma
RT5	Physics of divertor detachment and its control for ITER, DEMO and HELIAS operation
RT7	Physics understanding of alternative divertor configurations as risk mitigation for DEMO
RT6	Preparation of efficient Plasma Facing Components (PFC) operation for ITER, DEMO and HELIAS

The RTs, Research Topic Coordinators, TFLs and other relations foreseen until end 2023

RT22-01	L. Frassinetti	C. Giroud	S. Wiesen	D. King	AK/NV/MW	IOS/PEP/D SOL	JET, TCV, MAST-U, WEST	
RT22-02	M. Faitsch	M. Dunne	O. Sauter	E. Viezzer	BL/AK/MW	PEP	JET, TCV, MAST-U, WEST	DCT
RT22-03	O. Ficker	U. Sheikh	C. Reux	S. Jachmich (M. Lehnen)	AH/MB/EJ	MDC	JET, TCV, WEST	
RT22-04	F. Felici	B. Sieglin	L. Piron		MB/BL/EJ	IOS	JET, TCV, MAST-U, WEST	PrIO
RT22-05	H. Reimerdes	M. Bernert	D. Brida	N. Fedorczak	NV/ET/MW	DSOL	JET, TCV, MAST-U, WEST	
RT22-06	Y. Corre	Winddows on	K. Krieger		ET/AH/EJ	DSOL	JET, WEST	PWIE
RT22-07	C. Theiler	K. Verhaegh			NV/AH/MW		TCV, MAST-U	PWIE
RT22-08	A. Burckhart	C. Piron	R. Dumont		DK/MB/EJ	IOS	JET, TCV, MAST-U, WEST	DCT
RT22-09	J. Galdon	M. Vallar	Y. Kazakov		DK/AK/MW	FP	JET, TCV, MAST-U, WEST	

Allocated machine resources to the various RTs for the period 2022/23

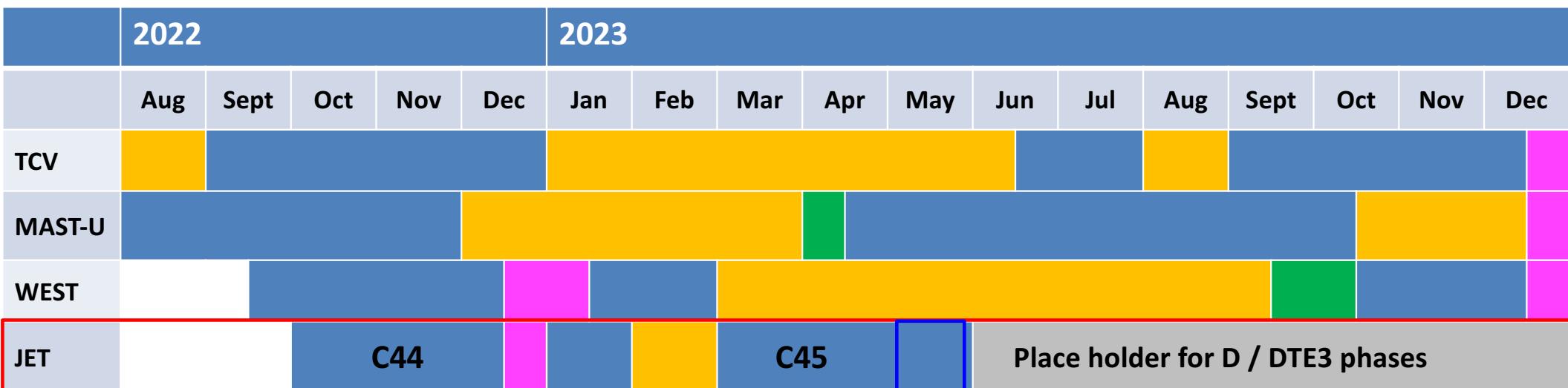
Machine allocation (following priority discussion)

RT	JET (sessions)		TCV (pulses)		MAST-U (pulses)		WEST (pulses)		
	year	2022	2023	2022	2023	2022	2023	2022	2023
RT22-01		20	15	50	110	34	30	15	0
RT22-02		10	15	50	100	40	35	15	0
RT22-03		30	15	60	70	0	0	0	30
RT22-04		5	9	50	100	30	25	15	15
RT22-05		7	6	70	70	40	45	0	30
RT22-06		4	8	0	0	0	0	30	105
RT22-07		0	0	70	100	50	50	15	0
RT22-08		4	4	50	50	35	50	15	15
RT22-09		4	4	40	80	20	25	0	0
Contingency		40		270		131		70	

Split among 2022-23 subject to change according to
machine time availability

N. Vianello | 2022-23 Pulse allocation | Remote | 15/06/2022 | Page 7

NEW:


- ❖ From 2022/23 campaign introduction of regular 3 TFLs + RTCs + other people as TSVV Pis / ITPA members / PLs (or sub project leaders)

- ❖ Call for participation for 2022/2023 (JET until end May 2023) has been launched and closes on 22nd of July 2022

View at the timeline

- For 2022-23, WPTE has developed a [unified Scientific Programme](#) (GPM last week) spanning over all 4 devices
- For JET, the [second half of 2023](#) was kept open, awaiting for the decision on DTE3 and the DT & TT analysis results. The contingency kept in May will be impacted by the recent delays of C42. A DTE3 phase requires a cleanup phase in October/November 2023 (time blocked for compatible experiments)
- The programme has been built on an [assumption of 200 sessions](#) in deuterium until end of May 2023
- JET delayed start from early June to 07/07/2022; He campaign cut from 80 to 70 sessions
- Even though AUG is not operating during this call, WPTE activity on AUG data can be carried out if propaedeutic to RT scientific goals (in the response to the call please indicate a different tokamak and explain the work in the work plan)**

Use of Work Awareness table in WP TE wiki may ease definition of status as well as progress of SSRL

STRATEGY [edit | edit source]

- Please describe here the overall strategy to achieve each of the scientific objectives as they appear above, by defining specific deliverables for the Research Topic.
- Include information both on the experimental strategy as well as for the analysis and modelling plan.
- The strategy should cover details for the experiments in each of the devices individually, when appropriate, but also the interrelation between them. It is important to identify leaders for each of the task in order to properly distribute the workload among the team. Please report on what

[Collapse]

No	Task	Deliverable	Report by (month)	Device (Pulse planned/achieved)	Estimated completion date	Comments
T1						
T2						

EXPERIMENTAL PLAN	ANALYSIS AND REPORT
• ...	• ...

(also sometimes referred to as “work awareness table”)

- Control room roles for JET: Please note that your participation in the JET campaign can include time as Session Leader (SL), Diagnostic Coordinator (DC), **MHD expert and TRANSP Expert** .
- When replying to the Call in IMS, select the campaign/experiment RT22-CR JET Control Room Roles (IMS tag "RT10"), then the Competence "Other" and finally indicate Session Leader or Diagnostic Coordinator as workplan.
- The other roles in the control room, such as Viewing System Operator (VSO) or Plasma Duty Officer (PDO) are not supported by WP TE.

RT22-01: Core-Edge-SOL integrated H-mode scenario compatible with exhaust constraints in support of ITER

#	
D1	Develop stationary high power H-mode scenario at low core and pedestal collisionalities compatible with detached divertor
D2	Provide physics-based cross-field transport coefficients to TSVVs (1, 3, 4 and 11) for turbulence modelling
D3	Determine the impact of different impurity mixes for partially detached divertors in high power operations in view of ITER radiative scenarios
D4	Assess pedestal performances with large SOL opacity
D5	Determine pedestal stability and transport characteristics at large plasma current (>3MA)
D6	Quantify impurity screening for high temperature pedestals
D7	Assess the compatibility and stability with X-point radiator regimes with confinement

Integrated H-mode scenario in ITER-like divertor condition is one of the main missions of DTT

RT22-02: Physics understanding of alternatives to Type-I ELM regime

#	
D1	Quantify turbulent and MHD driven transport in the vicinity of the separatrix and implications for predictions for ITER and DEMO
D2	Quantify first wall load in no-ELM scenarios and provide model for SOL transport extrapolation
D3	Extend the parameters space of no-ELM scenarios to large P_{sep}/R and/or pedestal top collisionalities relevant for ITER and DEMO
D4	Determine the key physics mechanisms regulating edge transport in order to access no-ELM regimes
D5	Determine access window and physics understanding for RMP ELM suppression and its compatibility with ITER FPO scenarios
D6	Quantify the overall performance of negative triangularity plasmas in view of DEMO

Low ELMs/no EMLs scenario at large P_{sep}/R are also key physics items of DTT, and 3D coils system adds further tools to address it

RT22-03: Strategies for disruption and run-away mitigation

#	
D1	Optimize disruption mitigations by single and multiple shattered pellet injection (SPI) at high plasma current and energy content in an all-metal environment to validate the ITER disruption mitigation strategy
D2	Quantify the required neon quantity for SPI into dilution cooled plasmas for sufficient thermal and current quench mitigation in ITER and the synchronisation requirements for dual deuterium/neon SPI in ITER
D3	Characterize/optimize the RE impact mitigation schemes and flushing effect with different deuterium injections techniques
D4	Determine the physics mechanisms generating run-away electrons in the current quench and in the plasma start-up phase
D5	Interpretative modelling of disruption mitigation dynamics (TSVV-8, TSVV-9) and prediction for ITER
D6	Quantify the radiation asymmetry during disruption mitigation with SPI
D7	Validate the modelling of image currents in conducting structures during disruption with halo current measurements

Disruption mitigation studies are also among the capabilities of DTT, where a SPI-based DMS in collaboration with ITER is planned.

RT22-04: Physics-based machine generic systems for an integrated control of plasma discharge

#	
D1	Develop and implement state-observers for physical plasma quantities on different devices in particular for radiative detachment control
D2	Develop machine independent strategies for the H-mode entry and exit and off-normal events supported by modelling.
D3	Develop and test disruption avoidance schemes and apply them on several different devices
D4	Develop robust strategies to optimize error field corrections supported by modelling
D5	Optimize plasma start-up and current ramp-up schemes supported by modelling in ITER like scenarios

Development of PCS (plasma control system) and focus of algorithms and capabilities needed is an important point for DTT

RT22-05: Physics of divertor detachment and its control for ITER, DEMO and HELIAS operation

#	
D1	Characterize detachment access and core plasma performance in scenarios using different fuelling schemes, different impurity mixtures
D2	Develop Control schemes for radiative detachment, transferable to DEMO/ITER
D3	Quantify edge-SOL particle and heat transport in detached conditions
D4	Characterize the interaction between plasma transport, neutrals (i.e. molecules) and the impact of baffling
D5	Quantify the degree of ELM heat load mitigation achievable by impurity seeding, investigating the dependences on relevant machine parameters
D6	Assess the evolution of detachment under slow transients (L-H transitions, sawtooth, loss of impurity seeding)

Detachment studies are also in the main mission of DTT

RT22-06: Preparation of efficient Plasma Facing Components (PFC) operation for ITER, DEMO and HELIAS

#	
D1	Quantify local power load distributions on castellated and shaped PFCs for ITER and DEMO, including melting situations using experimental data and predictive modelling
D2	Assess the impact of sustained high power / high particle fluence plasma exposure of metallic PFCs
D3	Quantify material erosion sources from metallic walls under ITER relevant plasma conditions (including high power and impurity seeding plasmas) and determine material migration pathways
D4	Quantify fuel retention in devices with metallic walls, with a focus on long pulse operation (using recent fuel retention diagnostic upgrades such as laser-based diagnostics where available)
D5	Determine fuel-removal and conditioning efficiencies in metallic devices in conditions relevant for ITER PFPO and extrapolate to DEMO
D6	Quantify the balance between gross and net erosion of W under different operational conditions

Plasma-Wall interaction also within the main missions of DTT

RT22-07: Physics understanding of alternative divertor configurations as risk mitigation for DEMO

#	
D1	Determine detachment onset, radiated power fractions, and core compatibility in H-mode for the alternative divertor configurations (ADCs) and characterize ELM activity in view of pedestal, heat flux and control in ADCs
D2	Characterize possible benefits of the snowflake configuration for X-point radiation stability and dissipated power in H-mode
D3	Quantify the degree of ELM heat load mitigation achievable by impurity seeding, investigating the dependences on relevant machine parameters
D4	Evaluate reduced SOL models against ADCs

Alternative Divertor studies also within the main missions of DTT

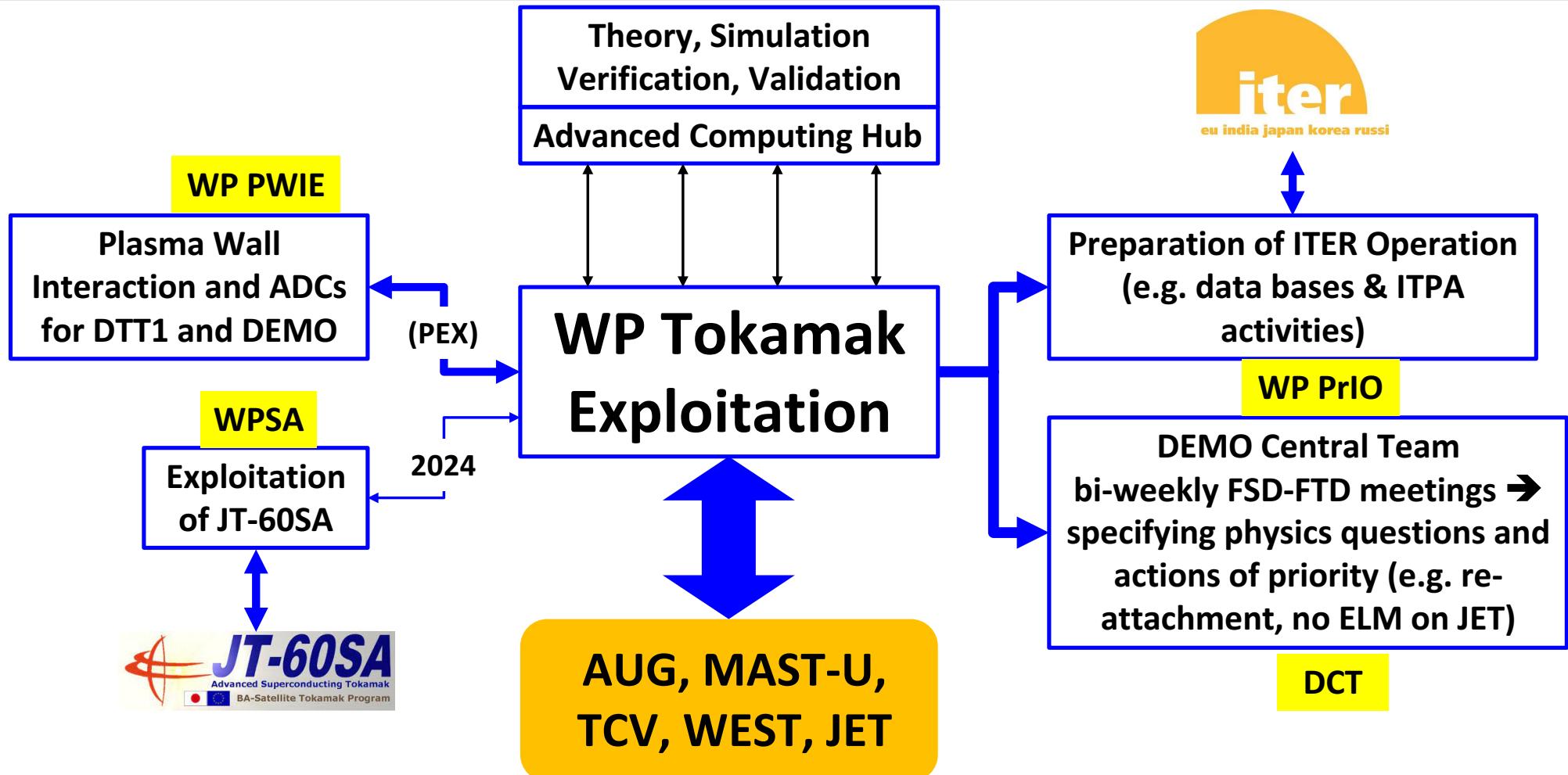
RT22-08: Physics and operational basis for high beta long pulse scenarios

#	
D1	Develop scenarios to assess the flux pumping mechanism efficiency
D2	Quantify the compatibility of high b long pulse with mitigated ELMs and/or with exhaust in metallic wall devices
D3	Characterize the fast and thermal ion transport together with the ExB , magnetic shear, turbulence conditions in steady-state scenarios at high- q
D4	Develop projection schemes of long pulse at high beta as a potential reactor scenario
D5	Develop an intrinsically steady state solution at high β_N (>3) in terms of q /pressure profile and stability. Compare it with other existing solutions in view of its application to JT-60SA and DEMO

- Long pulse non inductive scenarios are feasible and within capabilities of DTT current drive system, including integration with DEMO relevant pedestal and edge
- **High Beta steady state scenarios are a key physics element of JT60SA programme**

RT22-09: Physics understanding of energetics particles confinement and their interplay with thermal plasma

#	
D1	Provide high quality diagnostic information for the characterization of confined and lost fast ions in plasmas relevant for ITER and JT60-SA
D2	Quantify ion heating and core turbulence stabilization by ICRF-generated fast ions in view of ITER and DEMO
D3	Quantify the impact of fast ions and fast ion MHD driven instabilities on core transport
D4	Integrate the available heating, fast-ion and transport modelling tools for interpretation of experimental results in view of ITER and DEMO
D5	Quantify fast-ion losses and associated heat load from edge perturbations (ELMs and RMPs)
D6	Quantify neutral beam current drive and make predictions for ITER
D7	Identify AE control actuators and preliminary assess for ITER


In DTT, ICRF (and NBI) super-Alfvenic ions will be present.

Backup Slides

- Backup Slides

WP TE in FSD with overarching priorities: ITER & DEMO & PEX

WP TE Grant Deliverables (2022 & 2023 as one campaign)

TE.D.03	High fluence operation on actively cooled divertor at WEST assessed, and documented.	Dec. 2022
TE.D.04	Achievement of ELM control during the transient phases (I_p ramp-up and down, entering and exiting H-mode etc.) integrating ITER operational constraints.	Dec. 2022
TE.D.05	The role of turbulent and MHD driven transport in the vicinity of the separatrix for the stability of the pedestal quantified and the implications for predictions for ITER and DEMO reported.	Dec. 2022
TE.D.06	Achievement of state-observer based control of radiative detachment using multiple diagnostics.	Dec. 2023
TE.D.07	The disruption and run-away electron mitigation efficiency by single and multiple shattered pellet injectors on different sized devices to validate the ITER Strategy assessed and documented.	Dec. 2023
TE.D.08	Balance between gross and net erosion of W under different operational conditions in full-metallic toroidal devices	Dec. 2023
TE.D.09	Establishment and comparison of N and Ne-seeded partially-detached divertor in high-power operations in view of ITER radiative scenario.	Dec. 2023
TE.D.10	The role of electron and ion heat channels and plasma rotation on the access to H-mode for hydrogen, helium and mixed plasmas in view of the ITER non-active phase quantified.	Dec. 2023
TE.D.11	Incorporation of turbulence in multi-fluid calculations using physics-based diffusion coefficients (with TSVV4).	Dec. 2023

- ❖ GDs of 2021 considered completed as of 06/22
- Prior to call for proposals:
 - ❖ Definition of Research Topics
 - ❖ Definition of Scientific Objectives cross-checked against WP TE GD and MS
 - ❖ Emphasizing integrative aspects (e.g. exhaust and control related objectives combined with ITER and DEMO scenarios)

Most of the WP TE programme until end 2023 has been defined and discussed at recent WP TE programme meeting on 30th/31st of May 2022