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Alpha Channelling



Motivation: can we heat bulk ions directly through alpha particles?
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Classically alpha particles mainly slow-down on
electrons, but in a reactor the best performance is
achieved in HOT ION mode.

n+141MeV

The idea of alpha channelling is to use some waves
(IBWs) that can extract the kinetic energy of alpha IBW

particles (through stochastic interaction) and release ,VW/\\/\
it to bulk ions (via cyclotron interaction).




Stochastic cooling
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Goals of the EUROfusion research grant

Very limited evidences of alpha channelling have been found so far both in experiments and in numerical

simulations. [Darrow et al NF 96, Clark and Fisch PoP 00, Wong at al. PRL 04] [Cook et al PRL 10, Cook et al PPCF
11, Ochs and Bertelli and Fisch PoP 15]

The goals of the project are:

<=_the quantitative determination of the amount of fusion alpha power that can be transferred to IBW

> the determination of the conditions for minimal absorption by the electron and optimal transfer of
the energy from IBW to the thermal ions and of the required injected power.

> the optimization of the characteristic of the Alfvenic turbulence to maximize the effect of alpha
channelling



Results: fractional power vs toroidal wave number

Q: outward flux to model the low-frequency wave

Tme — 0.5m

By increasing the low-frequency wave fractional
flux the maximal power increases and power
50% -

moves towards low toroidal wave
numbers.

Only the scenario with two waves can
provide efficient alpha channeling.

In the optimal case, about 55% of alpha
particle energy can be extracted by IBWs.
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ORBIT simulations

The results on the alpha particles cooling have been confirmed by the simulations performed via the

ORBIT code. [White, Romanelli, Cianfrani and Valeo PoP 21]

These simulations also
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Simulations of Edge Plasma Oscillations



EMEDGE3D: two-fluid code simulating the edge of a tokamak plasma (constant density, equal
electron and ion temperatures and a constant toroidal external magnetic field).

Reduced MHD equations for electronic pressure, electrostatic potential, electromagnetic potential
(drift ordering, including DIAMAGNETIC VELOCITY)

Charge Balance &;Vigb + R 9, ViCb} — V“ V2L¢ — _|_

energy Balance O, +{{0. p}|= —I'V) V2 4| +{0. G(¢ — Casa p) |+ [ V2] + )
Ohm’s Law Beaﬂb — _6_1|2|v||(¢ — o p) ‘|‘

Curvature

ExB advection Resistivity



Medium-size tokamak
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Results: oscillations at low 3,
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Results: oscillations at low 3,
Average pressure
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2D Animations
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Results: type-Ill ELM
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the oscillation frequency decreases
with increasing energy flux into SOL

[Cianfrani, Beyer, Fuhr, PoP 2022]



Collisional Radiative Models in EIRENE simulations



What is EIRENE in a nutshell (e.g. in SOLPS)?..

Macroscopic:
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Microscopic

EIRENE-NGM: a 3D
Monte Carlo multi-
species transport
code incl. radiation
transfer, kinetic

or F-K hybrid.

CRMs for atomic and
molecular neutrals H,
H*, H,, H,(v), H,*, H,
H,*,..., impurities.
lonisation, CX,
recombination etc.




What is EIRENE in a nutshell (e.g. in SOLPS)?..

Macroscopic: - Microscopic

CFD codes EIRENE-NGM: a 3D
(computational fluid Monte Carlo multi-
dynamic): species transport
B2, Edge2D, EMC3, code incl. radiation
SOLEdge3X, etc... transfer, kinetic

or F-K hybrid.
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5 Sommmmmmmmmmmmmmmmmmme e " |neutrals  H, H*, H,,
. V5 _ H,(v), H.*, H-, H,*,...,
J/Balance equations: irﬁél}ritiezs
dN; lonisation, CX,
: dt AjiN; +n, - (EXCIT + IZ + CX + REC) recombination etc.
A5, ji
Ui EXCIT = ),.. vo;;)N; : "
o Zm( j'f) J ,_ CRM = list of states + transition data
1Z = Z'nt(vanrti) Nm. + Zz<va_zi) sz +... Often used:
— ) + ' + MILETL UsCU, -
REC Zk(kaJ Nk + Zf(vgh) NE T (vc;rj-[-)(Te, n,)- effective Maxwellian averaged rates




PLOUTOS: what is inside?..

1) CRM solver (transport excluded, pure A&M side of the problem) with extensive features

2) Plotting, solver results visualisation

3) Flexible reaction tables for EIRENE Databases (AMJUEL, HYDHEL, H2VIBR)
interconnected with the solver and plotting

TSVV5 Activities

e grouping of reactions: easier comparison btw data from different sources
* new column/features: sparse information now available

* default cases: testing purposes and model for molecular decay

e json output: reusability for new solver runs and other codes (EIRENE)

Conclusions Eirene Code Camp 22
we want to promote .. [PLOUTOS] .. as a standard pre-processing tool for Eirene

[Cianfrani, Borodin, Kuppers, EPJD 2023]




PLOUTOS: what is inside?..

1) CRM solver (transport exclud
2) Plotting, solver results visualli
3) Flexible reaction tables for El

interconnected with the solv

TSVV5 Activities

e grouping of reactions: easier co
* new column/features: sparse in
* default cases: testing purposes
e json output: reusability for new

Conclusions Eirene Code Camp 22

we want to promote .. [PLOUTO

l) JULICH

Forschungszentrum

IEK-4

EIRENE-NGM Home

Ploutos basics

EIRENE-Licence

availabe in eirene.de
(for registered users only).

- Plot cross section and rates from AMJUEL, HYDHEL, H2VIBR.
- Assess data quality and origin.
- Solve stationary CRMs with spectral analysis and sensitivity analysis.

- Prepare A&M input file for EIRENE.

Statue of the baby Ploutos,
personification of wealth.

National Archeological Museum,
Athens.

Enter Ploutos for H2-F.Cianfrani,2022-2023




EDGE2D-
EIRENE

simulations ,
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CRM vs EIRENE: TRANSPORT
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Unresolved vs resolved EIRENE simulations:

ratio res/unres D2 density 25
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Unresolved vs resolved CRM:

<sigma v> (cm”3/s)

Impact of vibrational resolution

H2VIBR: resolved
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EXCITED MOLECULAR STATES:

Model for excited states on top of ground state distribution: d 3I'Iu
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EXCITED MOLECULAR STATES:

Model for excited states on top of ground state distribution:
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Actions:

ModCR: CRM solver (CVODE) for integration with EIRENE aials
- Ongoing <
3
Vg

. MCCC database: inclusion into EIRENE

- planned, not started yet

MCCC DATABASE

MCCC database - Molecular Convergent Close-Coupling
e-molecule scattering cross sections

https://www.mccc-db.org/




Turbulence simulations near the X-point



Motivation: understand the physics of turbulence
generation near the X-point through fast 3D simulations




Motivation: understand the physics of turbulence
generation near the X-point through fast 3D simulations

ASSUMPTIONS: constant temperature, ignoring curvature-parallel velocity-drifts-magnetic potential-
diamagnetic terms, low frequency....

--> SIMPLEST SYSTEM FOR 3D TURBULENCE SIMULATIONS

OAL¢+ {0, AL0) = BV (P —0) + nAlo
Op+1{¢,p} = —k0yd+ DVi(p—¢)+x1L ALp




Motivation: understand the physics of turbulence
generation near the X-point through fast 3D simulations

ASSUMPTIONS: constant temperature, ignoring curvature-parallel velocity-drifts-magnetic potential-
diamagnetic terms, low frequency....

--> SIMPLEST SYSTEM FOR 3D TURBULENCE SIMULATIONS
VISCOSIty

ST

Driftcoupling Diffusior

Advection: Free energy source: D=7po+7P
background pressure

— OzPo :po/lo O<1:i

{f.9y=0:.fVyg—0.9V;f gradients




Motivation: understand the physics of turbulence
generation near the X-point through fast 3D simulations

ASSUMPTIONS: constant temperature, ignoring curvature-parallel velocity-drifts-magnetic potential-
diamagnetic terms, low frequency....

--> SIMPLEST SYSTEM FOR 3D TURBULENCE SIMULATIONS

8tALgb+:B N+ 1A% ¢
o + [, p) = k¢ + D |+ xLALp

Advection: nonlinear inverse energy Drift coupling: near the X- pomt It s
cascade to Iarge parallel scales (n=0) toroidal, thus proportlonal to n.

Turbulence suppression? HW effective model still valid? Is shear able to
. sustain drift response? What's the role of other parameters?




. =70 av Ly full toroidal
Geometry: == I Y = L, ° = i local in poloidal plane

kH >k

d SLAB: close X point VH — 82 AJ_ — aa% T 05

—

QTOKAMAK: 7| — bV AL =(V—-V)):?

. B
h=—=
B

Laplacian and parallel derivative are non-linear in FS if B's are not constant (shear).



Metodology: 4th order Runge-Kutta in Fourier space

» at each iteration pressure and vorticity are advanced

» electrostatic potential is computed inverting the Laplacian

O w/o shear: inverse Laplacian is analytical in FS and can be easily inverted.
O with shear: Laplacian and inverse are numerically pre-calculated before
starting time iteration and stored as csr matrix.

» all non-linear terms are computed in real space with Fast Fourier

Transforms (FFT) and pulled back in FS with inverse FFT (pseudo-
spectral)

O w/o shear: advection
O with shear: advection + all terms with B’s (drift,..)



Parameters:

Braginsky parameters for typical DTT case:

a=68cm R=2.14m B=3x10*Gs n=5x1013cm=3
Background pressure gradients: |,=40cm

Two cases for diffusivity: Classical(1.2m?/s) vs Neoclassical (x10)

t=0.0ms
ressure

electro-static potential

Initial values: 3D wave packet _
centered inside the ¢
simulation domain.

0.25

0.00
X (cm) 2.5 0 x (cm) 25

Boundary Conditions:

periodic boundary conditions

0.00

NEW: vanishing Dirichlet "radial" BC



Simulations:

SLAB
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Simulations: SLAB

classical diffusivity

t=0.334ms

pressu re electro-static poter;tial
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Stronger turbulence

large drift response
wider toroidal spectrum
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Outlook:

comparison between different magnetic geometries 2 X point

inclusion of more effects (curvature, electro-magnetic, gyrofluid
corrections,..)

consistent diffusivity: test particle motion on turbulent scenario

Fabio Moretti’s talk..

global (poloidal) simulations

predictions for DTT



Additional material



Collisional-Radiative Models (CRM)

Grotrian diagram for atomic H (D, T)

Excitation energy (eV)

60000

80000

100000

Wavenumber (cm -Y)

Balance equations:

dN;

dtl = ZAJ-[-J\{,- +n, - (EXCIT + 17+ CX + REC)
JE

EXCIT = ¥, {vo;)N;

1Z = Z-x-ri:(vanri) N?;. + Zz<vgzi) sz_ T ...

REC = Zk(vgki> N!::I_ + ZI(vJIi>N{2+ + ...

J, k, I, m, z, ... states can be fine-superfine
resolved or, opposite, bundled into few quasi-
metastables (MS)

CRM = list of states + transition data

(voﬁ)(Te, n,)- effective Maxwellian averaged rates



What is EIRENE in a nutshell (e.g. in SOLPS)?..
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Macroscopic:

CFD codes
(computational fluid
dynamic):

B2, Edge2D, EMC3,
SOLEdge3X, etc...

3D EIRENE

volume cell
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Microscopic

EIRENE-NGM: a 3D
Monte Carlo multi-
species transport
code incl. radiation
transfer, kinetic

or F-K hybrid.
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Solving standalone CRM is necessary to
understand the interplay between transport and
local chemical reactions in full EIRENE simulations

CRMs

(HYDKIN, AMJUEL,
ADAS, ...)

for atomic and
molecular neutrals
H,H*,H,,H,(v),H,*,H
H,*,..., impurities
lonisation, CX,
recombination etc.




CRM FOR MOLECULES

background

Hmparameters
Databases: T.=T=0.2=30eV.
AMJUEL, HYDHEL | [ =n=1019m3

nezni:1021m-3




CRM FOR MOLECULES: leading reactions with temperature

Density [a.u.]

Branching ratios H»
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low temperature (T < 2eV)

MAR/MAD

competition at very
low temperature

leading reaction chains:
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CRM FOR MOLECULES (vibr. resolved)
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CRM FOR MOLECULES: leading reactions with temperature

Branching ratios Hy(v =5)

H, density [a.u.]

Branching ratios Hy(v = 0)
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Simulations:

CRM vs EIRENE (vibr. resolved):

EIRENE: 793’300 histories
EIRENEXx10: 7'933’000 histories
EIRENEXx100: 79'330°000 histories
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transport is important for vibrational distribution-
full particle simulations (long and heavy)...




Potential Energy (eV)

a

EXCITED MOLECULAR STATES: MCCC DB

Preliminarily:

Internuclear Distance (A)

MCCC database:
Scarlett ADT 2021
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Molecular Convergent Close-Coupling

electron and positron collisions

target: H, (isotopes), H,* (isotopes), HeH’
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vibrational resolution
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EXCITED MOLECULAR STATES: EIRENE
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EXCITED MOLECULAR STATES: EIRENE

o excited state d3[1;:
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