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Plasma simulation models

The particle-in-cell (PIC) method

= DESPICCO: plasma-wall interaction at the divertor walls

* PICCOLO: negative ion sources, plasma sources and plumes
= Collisions database for PIC codes

The hybrid PIC/fluid method

» EP2PLUS: plasma thruster plumes and S/C interaction
Ongoing and foreseen activities
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Plasma simulation models (l)

» Given a set of boundary conditions on electric/magnetic fields and particles, a
plasma model aims at either:

= obtaining the particle distribution function f(r, v, t) satisfying Maxwell-
Boltzmann’s equation (kinetic models):

Ofs Ofs _ (0fs
5% Vfs+qs(E+vx B)- 81)8_((%)0

[[[ f(r,v,t)d*v = n(r,t) = number density

= solving different moments of the Maxwell-Boltzmann’s equations (fluid
models) in terms of fluid properties u, n, p, q, T

higher lfff [Boltz.eq.|d?v —> Mass conservation equation:  Gg(n,u,t)

order fff [Boltz.eq.]’udBU —> Momentum balance equation: G1(n, u, p, t)
moments 2
fff [Boltz.eq.] %d?”u —> Energy balance equation: Go(n,u, T, q,t)
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Plasma simulation models (ll)

» Plasma equations are always coupled with Maxwell's equations:

V-B=0

0B
E: e ——— =
V X Y VXxB=yu

= charge and current
density are moments
of the plasma species
distribution functions

» Plasma models can thus be classified into:

= Kinetic models directly solving for Maxwell-Boltzmann’s equation:

afs Ds afs
5 +m8 Vfs+qs(E+vx B) p.

(

Ofs
ot

COMPLEX
MODELING
&

» Kinetic models based on particles (particle-particle, particle-mesh methods)
» Fluid models: assumptions of Maxwellian distribution and equation closures
» Hybrid PIC-fluid models: different treatment (kinetic/fluid) according to species
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The particle-in-cell method (I): shape and interpolation functions

»  Lagrangian-Eulerian particle-mesh method, consisting in discretizing the distribution function
with macro-particles (Lagrangian), while solving for the fields at the mesh nodes (Eulerian):

N
f(r,v) = Z wtp\é(v —vp)S(r — 1) FUSILI_IC)JA\'II'DIE)N
p=1

Macro-particle weight

NEAREST GRID POINT (NGP) CLOUD IN CELL (CIC) TRIANGULAR SHAPED CLOUD (TSC)
AL 1L R
g—1 g Tp g+1 g—1 g Tp g+1
WEIGHTING FUNCTION , Peg = > Z ’wpqu(T‘g _ f,,p)
T —T node g ,—
W(’I") = ff/ S(’l",)bo ( )dST’ volume 1 p=1
Ar \ jg e Z quPva(rg o rp)

p=1
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The particle-in-cell method (Il): the computational cycle

Macro-particles push »  Push: given long-range Lagrangian E,,, B, 2>
v, T !l . e .
L update of macro-particles positions/velocities
Particle-wall dw
intcrﬁction my dtp — Q'p( Ep + v, ¥ Bp),
Grid to particles Collisions drp B
. . ollisions S 4 =
interpolation P.O dt p»
E,. B, 7
1| »  Short-range particles interaction (collisions)
Particle to grid . ..
interpolation modeled as instantaneous collisional events,
Pe.g> Ja with sampling based on MCC/DSMC algorithms
Ll Gt o 301"01“<:U > Instantaneous particle-wall interaction
g»=g

» jon/electron induced SEE, thermionic,
sputtering, recombination, reflection, etc...

»  Macro-particles weighting to mesh nodes - Eulerian charge and current densities p. g4, j,
>  Maxwell’s equation solver - Eulerian electric and magnetic fields E,;, B,
> Interpolation to particle positions - Lagrangian electric and magnetic fields E,,, B, New step

from «Taccogna 2023, J. Appl. Phys. 134, 150901»
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The particle-in-cell method (lll): the constraints

1. Courant—Friedrichs—Lewy (CFL) condition:
» Electrostatic PIC: v, Atp;c < Ar

Further limitation
» Electromagnetic PIC: cAtp;c < Ar \ ontime step

2.  Grid resolution to avoid numerical heating: Ar < {Ap. Wwith { = 0(1)

= |mplicit (more complex) PIC schemes do not have to comply with this - Large savings
in computational time

3. Plasma frequency resolution: w,.Atp;c < 0.2

4. Cyclotron frequency resolution: w..Atp;c < 0.35
5. Cyclotron radius resolution: Ar < 17,

6. Collisional time constraint: Atp;c < 0.05 A1 min
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DESPICCO: Divertor Edge Simulator of Plasma-wall

Interaction with Consistent COIllisions
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from «Cichocki 2023, Nucl Fusion 63, 086022

Arepunoq orporrad

A\

A\

>

2D-3V code developed
within DTT (2021-2023) to
study the plasma-wall
interaction in the vicinity of
the divertor in collaboration
with ISTP-CNR (Bari)

Complex divertor
monoblocks geometries
Parallelized with either
Open-MP or CUDA on a
single node
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DESPICCO results: exposed edges in ITER

Code validated against theoretical predictions
For a poloidal gap scenario featuring exposed edges in ITER:
» Code results were benchmarked against SPICE2 code

» A parametric analysis on the effects of electron wall emission and collisions was carried out

lon Mach number [-] Potential [V] versus wall distance
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DESPICCO results: DTT shadowed edges ST douis

3.0
»  An attached divertor condition with SN magnetic 2.5
configuration was considered (invited talk EPS 2023, 2-9
Cichocki 2024, Plasma Phys. Control. Fusion 66, 025015) %8
»  Worst energy flux points on both IVT and OVT 0'5
»  Effect of bevelling and collisions/wall emission on energy 0.0
fluxes and ion impact distribution function was assessed 0 10 20
lon impact distribution function at OVT
lon/electron energy fluxes around corner at OVT close to exposed edge [m2sldegleV] "
I-_______ | ons 10
1011 Vertical shadowed surface 1.
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PICCOLO: PIC COde for LOw temperature plasmas

A\

General purpose PIC code for multi-dimensional simulations (1D, 2D, 3D) in cylindrical
and cartesian coordinates

Developed in collaboration with ISTP-CNR (Bari)

Parallelized with MPI and tested over more than 3000 CPU cores, with good scalability

- p
Currently electrostatic PIC code VZ¢ = —E—C
0

It already incorporates DESPICCO functionalities

Benchmarked against other codes within LANDMARK, Low temperAture
magNetizeD plasMA benchmaRKs, https://jpb911.wixsite.com/landmark/test-cases

Apart from divertor scenarios, already applied for:

= Hall thruster chamber simulations (SPT100)

= Negative ion sources chamber simulations (SPIDER, ITER)
» Streamer simulations (high pressure discharge ignition)

VV YV VY

Y
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https://jpb911.wixsite.com/landmark/test-cases

PICCOLO: 2D Penning discharge benchmark

lon density video

o —3
Simulation domain n; (m™)

B = B.1, 0.02
® injection

He+/regi0n 0.01

e_. e =
Y s e E 0.00

e ® diagnostics =

—o=0 point
\ —0.01
. —0.02
A collisionless plasma diffuses out of the box —0.02 0.00 0.02
through the onset of instabilities (rotating spoke z (m)
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PICCOLO: streamer 2D r-z simulation

r 4 dp/or = >  Experimental setup for plasma processing experiments
e_ """""""""" featuring a high-voltage conical needle
o ° e o i > 2D simulation in cylindrical coordinates
O te. >  Self-consistent high pressure discharge ignition
- =0 ° : i = Electrons ionize a background gas (at 1 atm), startin
0z . S .
o from a few free electrons distributed in space
»  Time-varying boundary conditions - Study of transient
A iy
‘ +],— phenomena
Electron mean energy Electric potential lon density [m3]
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PIC codes collisional database

»  The collisional cross sections are stored in a common PIC codes HDF5 database
»  Vast variety of collisional processes: elastic, ionization, excitation, charge exchange,
dissociative ionization, vibration, recombination, etc...
= Currently only state-independent cross sections
= We are working also on state-dependent (vibration/excitation) cross sections
electron-deuterium atom cross sections electron-H molecule cross sections
107 total
1018 Lola
107174
: 10—2[}
1072 _
B TR B e
g = - dissociative
® 10_?1 © 10—?—1— aChment
— ol ||
1022 10-26 J j:i'm .
= T T ——— \mEa LA —25 R : i R N Pt R N S
10! 100 10! 107 10° 107501 e T e 0 15

E[ om (C\Ir’] Et’. ([‘\r]



The hybrid PIC/fluid method

4 ELECTRON CONSERVATION EQUATIONS
MORE

AFFORDABLE . CONTINUITY OF MASS (OR CURRENT) MAXWELL'S
L e - CONSERVATION OF LINEAR MOMENTUM K——> e
. CONSERVATION OF ENERGY
HYBRID
FLubpic |[< MAXWELLIAN DISTRIBUTION ASSUMPTION TO EVALUATE:
PRESSURE TENSOR, MOMENTUM GAIN, HEAT FLUX
MODELS
ELECTRON HEAVY SPECIES PIC
FLUID MODEL MODEL

\ — —
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EP2PLUS: Extensible Parallel Plasma PLUme Simulator

»  Hybrid 3D code developed at UC3M (University of Madrid “Carlos 11I”) during my PhD studies
» lons and neutrals followed as PIC macro-particles
»  Electrons modeled as a magnetized fluid subject to conservation equations:

V - (Je + Jipic) = —0p. /0t CURRENT CONTINUITY
0= —Vpe —ene (E+ue X B) =) VesMeNe (Ue — Us) MOMENTUM BALANCE

v—1
Lo [ me POLYTROPIC
Too e APPROXIMATION
»  Quasineutral approximation (n, = .5 Zs ng), except in rarefied regions where a non-linear

Poisson’s equation solver is considered:

lene(¢) — pe,pic]
€0

V2 =

> Deformed structured PIC meshes can be used

»  Studies on different plasma thruster plumes scenarios
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EP2PLUS applications (I): plasma plumes - S/C interaction

Electric potential [V]
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from «Cichocki 2017, Plasma Sources Sci.

Technol. 26,125008»
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from «Cichocki 2018, Acta
Astronautica 146, 216-227»



EP2PLUS applications (Il): plumes Helicon plasma plume
expansion in a magnetic nozzle

Electric field [V/m]

Plasma plume expanding in geomagnetic field i’

10°

Electric fleld [V/m]

z (m)
72 LMA0thENGS b S

0.0 0.2 0.4
2z (m)

5 Electron density [m-3]

Electric current
streamlines

y (m) plume axis
from «Cichocki 2020, Acta Astronautica 175, 190-203»

104

EI\EI& from «Cichocki 2022, Front. Phys. 10, 876684»




Ongoing activities

Q0  Finalization of DESPICCO simulations of plasma-wall interaction in the DTT divertor region, within
work package DTT-PEX 2023

= Simulations of the DOME region for an XD magnetic configuration
= Inclusion of Neon gas and e-Ne, Ne-D collisions
= Larger domain size in the direction normal to the wall - a few cms in 1D simulations

QO  Finalization of Eurofusion PARADIGM HPC Project (PARametric Analysis of Dlvertor Geometry
considering Multiple kinetic effects)

= Set of > 50 simulations with varying monoblock bevel angles and plasma/magnetic field conditions

0  Update of PICCOLO to simulate magnetic nozzle expansions (collaboration with Doct. F. Napoli and
PhD student D. lannarelli) = propulsive application of ProtoSphera and development of Helicon
plasma thrusters

= At free-loss boundaries, some electrons must be reflected (energy criterion)
0  Collaboration with ISTP-CNR in PIC simulations of various plasma sources:

= Negative ion source SPIDER (ITER reactor)

» Cylindrical streamer discharge ignition (plasma processing)

m Particle simulations of plasma-wall interaction at the divertor, plasma sources and plumes - February 5, 2024 5



Foreseen activities

Short/Medium term activities:
1. Application of DESPICCO/PICCOLDO to relevant scenarios in DTT and ProtoSphera (any proposals?)

2. Study of a magnetic nozzle plume expansion with PICCOLO to assess the propulsive performance
of both direct fusion drive thrusters (e.g. ProtoSphera propulsive application) and other plasma
thrusters (Helicon, ECR thrusters, etc...)

* Astudy for a Helicon plasma thruster prototype will be presented at 38th IEPC (International
Electric Propulsion Conference)

Study of the plasma-divertor wall interaction in WEST with DESPICCO (WPTE 2024)

Participation as invited speaker to ESCAMPIG 2024 conference (PIC codes applications)

Inclusion of molecular collisions physics in PIC codes (with vibrational level dependent cross sections)
Modeling of neutrals as particle species (in a separate TPMC module) in DESPICCO/PICCOLO
Medlumllong term activities:

1. Experimental activities in ProtoSphera and related projects (to be defined)

2. Update of PICCOLO to electromagnetic PIC - fully consistent simulations of laser-plasma
interaction, RF plasma sources, plasma-wall interaction in proximity to ICRH antenas, etc...

o0 rw
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Thank you very much for the attention

Questions?

m Particle simulations of plasma-wall interaction at the divertor, plasma sources and plumes - February 5, 2024 53




Filippo Cichocki
filippo.cichocki@enea.it

ENEA, PLAS-PAX

A 4

m Particle simulations of plasma-wall interaction at the divertor, plasma sources and plumes - February 5, 2024



mailto:filippo.cichocki@enea.it

Extra slides (1): PIC simulations for DTT (OVT and IVT)
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Extra slides (ll):

contours plot for
no-effects cases

contours plot for
all-effects cases

PIC simulations for DTT (dist. functions)

() funp (s7'm2%eV-ldeg™!) at OVT, location 1

(b) fimp (s7'm~%eV~ldeg™!) at OVT, location 2
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Extra slides (lll): EP2PLUS applications to GITs and HETs

HALL THRUSTER PLUME GRIDDED ION THRUSTER PLUMES
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Extra slides (IV): TPMC-PIC model

External Power Electron-neutral
(capacitive DC coupling) cross sections
- Vanode (discharge voltage)
= - ¢ (material relative permittivity O,, N,, O, N, Xe
’ /
PLASMA MODULE | >  GAS MODULE ‘l
= Cathode electron injection* e (15, i)
» Update volume charges keo(T;, 21) * Anode / cathode
= Feld solver j. k are the injection
= Plasma EoM radial/axial node | ®* Gas EoM
= MCC collisions indices = MCC collisions
= Plasma-wall interaction: ng (1}, i) *- Gas-Surface
T update surface charges e S { Interaction

v

Diagnostics

- Global quantities

- Distribution functions
- Moments of f
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