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Plasma simulation models (I)

➢ Given a set of boundary conditions on electric/magnetic fields and particles, a 

plasma model aims at either:

▪ obtaining the particle distribution function 𝑓(𝒓, 𝒗, 𝑡) satisfying Maxwell-

Boltzmann’s equation (kinetic models):

▪ solving different moments of the Maxwell-Boltzmann’s equations (fluid 

models) in terms of fluid properties 𝒖, 𝑛, 𝑝, 𝒒, 𝑇:

higher

order

moments

Mass conservation equation: 

Momentum balance equation:

Energy balance equation:



Plasma simulation models (II)

➢ Plasma equations are always coupled with Maxwell’s equations:

➢ Plasma models can thus be classified into:

▪ Kinetic models directly solving for Maxwell-Boltzmann’s equation:

▪ Kinetic models based on particles (particle-particle, particle-mesh methods)

▪ Fluid models: assumptions of Maxwellian distribution and equation closures

▪ Hybrid PIC-fluid models: different treatment (kinetic/fluid) according to species
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MAXWELL’S EQUATIONS (SI) charge and current

density are moments

of the plasma species

distribution functions

COMPLEX 

MODELING



The particle-in-cell method (I): shape and interpolation functions
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SHAPE 

FUNCTION

NEAREST GRID POINT (NGP) CLOUD IN CELL (CIC) TRIANGULAR SHAPED CLOUD (TSC)

➢ Lagrangian-Eulerian particle-mesh method, consisting in discretizing the distribution function

with macro-particles (Lagrangian), while solving for the fields at the mesh nodes (Eulerian):

WEIGHTING FUNCTION

node

volume

Macro-particle weight
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➢ Push: given long-range Lagrangian 𝑬𝑝, 𝑩𝑝 → 

update of macro-particles positions/velocities

➢ Macro-particles weighting to mesh nodes → Eulerian charge and current densities 𝜌𝑐,𝑔, 𝒋𝑔

➢ Maxwell’s equation solver → Eulerian electric and magnetic fields 𝑬𝑔, 𝑩𝑔

➢ Interpolation to particle positions → Lagrangian electric and magnetic fields 𝑬𝑝, 𝑩𝑝→ New step
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from «Taccogna 2023, J. Appl. Phys. 134, 150901»

➢ Short-range particles interaction (collisions) 

modeled as instantaneous collisional events, 

with sampling based on MCC/DSMC algorithms

➢ Instantaneous particle-wall interaction

▪ ion/electron induced SEE, thermionic, 

sputtering, recombination, reflection, etc…

The particle-in-cell method (II): the computational cycle
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1. Courant–Friedrichs–Lewy (CFL) condition:

▪ Electrostatic PIC: 𝑣𝑒Δ𝑡PIC < Δ𝑟

▪ Electromagnetic PIC: 𝑐Δ𝑡PIC < Δ𝑟

2. Grid resolution to avoid numerical heating:     Δ𝑟 ≤ 𝜁𝜆De   with 𝜁 = 𝑂(1) 

▪ Implicit (more complex) PIC schemes do not have to comply with this → Large savings 

in computational time

3. Plasma frequency resolution: 𝜔peΔ𝑡PIC < 0.2

4. Cyclotron frequency resolution: 𝜔ceΔ𝑡PIC < 0.35

5. Cyclotron radius resolution: Δ𝑟 ≤ 𝑟Le

6. Collisional time constraint: Δ𝑡PIC < 0.05 Δ𝑡coll,min

Further limitation

on time step
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The particle-in-cell method (III): the constraints



DESPICCO: Divertor Edge Simulator of Plasma-wall 

Interaction with Consistent COllisions
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➢ 2D-3V code developed

within DTT (2021-2023) to

study the plasma-wall

interaction in the vicinity of

the divertor in collaboration

with ISTP-CNR (Bari)

➢ Complex divertor

monoblocks geometries

➢ Parallelized with either

Open-MP or CUDA on a

single node

from «Cichocki 2023, Nucl Fusion 63, 086022»
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DESPICCO results: exposed edges in ITER
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➢ Code validated against theoretical predictions

➢ For a poloidal gap scenario featuring exposed edges in ITER:

▪ Code results were benchmarked against SPICE2 code

▪ A parametric analysis on the effects of electron wall emission and collisions was carried out

Ion Mach number [-] Potential [V] versus wall distance

Mean ion impact energy

[eV] along the wall

𝑠
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from «Cichocki 2023, Nucl Fusion 63, 086022»



DESPICCO results: DTT shadowed edges
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➢ An attached divertor condition with SN magnetic

configuration was considered (invited talk EPS 2023, 

Cichocki 2024, Plasma Phys. Control. Fusion 66, 025015)

➢ Worst energy flux points on both IVT and OVT

➢ Effect of bevelling and collisions/wall emission on energy

fluxes and ion impact distribution function was assessed

Ion Mach number at OVT [-]

Ion/electron energy fluxes around corner at OVT

Ion impact distribution function at OVT 

close to exposed edge [m-2 s-1deg-1eV-1]
ions

electronswith

collisions

without

collisions

𝑠



PICCOLO: PIC COde for LOw temperature plasmas
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➢ General purpose PIC code for multi-dimensional simulations (1D, 2D, 3D) in cylindrical

and cartesian coordinates

➢ Developed in collaboration with ISTP-CNR (Bari)

➢ Parallelized with MPI and tested over more than 3000 CPU cores, with good scalability

➢ Currently electrostatic PIC code

➢ It already incorporates DESPICCO functionalities

➢ Benchmarked against other codes within LANDMARK, Low temperAture

magNetizeD plasMA benchmaRKs, https://jpb911.wixsite.com/landmark/test-cases

➢ Apart from divertor scenarios, already applied for:

▪ Hall thruster chamber simulations (SPT100)

▪ Negative ion sources chamber simulations (SPIDER, ITER)

▪ Streamer simulations (high pressure discharge ignition)
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https://jpb911.wixsite.com/landmark/test-cases


PICCOLO: 2D Penning discharge benchmark
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Simulation domain

A collisionless plasma diffuses out of the box 

through the onset of instabilities (rotating spoke)

Ion density video



PICCOLO: SPIDER chamber 2D y-z simulation
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➢ Increased artificially the dielectric constant to reduce the computational cost (x 22500)

➢ Applied magnetic field perpendicular to the page, to filter electrons

E
le

c
tr

ic
 p

o
te

n
ti

a
l
[V

]

E
le

c
tr

o
n

v
e

c
to

r 
fl

u
x

 [
m

-2
s

-1
]

E
le

c
tr

o
n

te
m

p
e

ra
tu

ra
 [

e
V

]

D
e
u

te
ri

u
m

io
n

 v
e

c
to

r 
fl

u
x

 [
m

-2
s

-1
]

d
riv

e
rs

m
a
g

n
e
ti

c
fi

lt
e
r

e
ff

e
c
t



PICCOLO: streamer 2D r-z simulation
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➢ Experimental setup for plasma processing experiments

featuring a high-voltage conical needle

➢ 2D simulation in cylindrical coordinates

➢ Self-consistent high pressure discharge ignition

▪ Electrons ionize a background gas (at 1 atm), starting

from a few free electrons distributed in space

➢ Time-varying boundary conditions → Study of transient

phenomena

Electric potential

[V] after 0.1 µs
Electron mean energy

evolution [eV]

Ion density [m-3] 

after 0.1 µs

+ −



PIC codes collisional database
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➢ The collisional cross sections are stored in a common PIC codes HDF5 database

➢ Vast variety of collisional processes: elastic, ionization, excitation, charge exchange, 

dissociative ionization, vibration, recombination, etc…

▪ Currently only state-independent cross sections

▪ We are working also on state-dependent (vibration/excitation) cross sections

electron-deuterium atom cross sections electron-H molecule cross sections

dissociative

attachment

dissociative

ionization

ionization

excitations

elastic elastic

ionization

total

total



The hybrid PIC/fluid method
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HYBRID 

FLUID/PIC 

MODELS

ELECTRON CONSERVATION EQUATIONS

MAXWELLIAN DISTRIBUTION ASSUMPTION TO EVALUATE: 

PRESSURE TENSOR, MOMENTUM GAIN, HEAT FLUX

ELECTRON 

FLUID MODEL

HEAVY SPECIES PIC 

MODEL

MORE 

AFFORDABLE

LESS PRECISE 

THAN FULL-PIC

MAXWELL’S 

EQUATIONS

• CONTINUITY OF MASS (OR CURRENT)

• CONSERVATION OF LINEAR MOMENTUM

• CONSERVATION OF ENERGY
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EP2PLUS: Extensible Parallel Plasma PLUme Simulator
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➢ Hybrid 3D code developed at UC3M (University of Madrid “Carlos III”) during my PhD studies

➢ Ions and neutrals followed as PIC macro-particles

➢ Electrons modeled as a magnetized fluid subject to conservation equations:

➢ Quasineutral approximation (𝑛𝑒 = σ𝑠𝑍𝑠 𝑛𝑠), except in rarefied regions where a non-linear 

Poisson’s equation solver is considered:

➢ Deformed structured PIC meshes can be used

➢ Studies on different plasma thruster plumes scenarios

CURRENT CONTINUITY

MOMENTUM BALANCE

POLYTROPIC 

APPROXIMATION



EP2PLUS applications (I): plasma plumes - S/C interaction

Electric potential [V]

S/C 

body

debris

S/C

from «Cichocki 2017, Plasma Sources Sci. 

Technol. 26,125008»

from «Cichocki 2018, Acta 

Astronautica 146, 216–227»

Electric potential [V]

Solar 

arrays

thruster

Solar arrays



EP2PLUS applications (II): plumes
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Plasma plume expanding in geomagnetic field
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Helicon plasma plume 

expansion in a magnetic nozzle

Electron density [m-3]

plume 

axis

plume 

axis

Electric field [V/m]

plume 

axis

from «Cichocki 2020, Acta Astronautica 175, 190–203»

from «Cichocki 2022, Front. Phys. 10, 876684»

Electric field [V/m]

plume axis



Ongoing activities
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❑ Finalization of DESPICCO simulations of plasma-wall interaction in the DTT divertor region, within

work package DTT-PEX 2023

▪ Simulations of the DOME region for an XD magnetic configuration

▪ Inclusion of Neon gas and e-Ne, Ne-D collisions

▪ Larger domain size in the direction normal to the wall → a few cms in 1D simulations

❑ Finalization of Eurofusion PARADIGM HPC Project (PARametric Analysis of DIvertor Geometry 

considering Multiple kinetic effects)

▪ Set of > 50 simulations with varying monoblock bevel angles and plasma/magnetic field conditions

❑ Update of PICCOLO to simulate magnetic nozzle expansions (collaboration with Doct. F. Napoli and 

PhD student D. Iannarelli) → propulsive application of ProtoSphera and development of Helicon

plasma thrusters

▪ At free-loss boundaries, some electrons must be reflected (energy criterion)

❑ Collaboration with ISTP-CNR in PIC simulations of various plasma sources:

▪ Negative ion source SPIDER (ITER reactor) 

▪ Cylindrical streamer discharge ignition (plasma processing)
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Foreseen activities
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❑ Short/Medium term activities:

1. Application of DESPICCO/PICCOLO to relevant scenarios in DTT and ProtoSphera (any proposals?)

2. Study of a magnetic nozzle plume expansion with PICCOLO to assess the propulsive performance 

of both direct fusion drive thrusters (e.g. ProtoSphera propulsive application) and other plasma 

thrusters (Helicon, ECR thrusters, etc…)

• A study for a Helicon plasma thruster prototype will be presented at 38th IEPC (International 

Electric Propulsion Conference) 

3. Study of the plasma-divertor wall interaction in WEST with DESPICCO (WPTE 2024)

4. Participation as invited speaker to ESCAMPIG 2024 conference (PIC codes applications)

5. Inclusion of molecular collisions physics in PIC codes (with vibrational level dependent cross sections)

6. Modeling of neutrals as particle species (in a separate TPMC module) in DESPICCO/PICCOLO

❑ Medium/long term activities:

1. Experimental activities in ProtoSphera and related projects (to be defined)

2. Update of PICCOLO to electromagnetic PIC → fully consistent simulations of laser-plasma 

interaction, RF plasma sources, plasma-wall interaction in proximity to ICRH antenas, etc…
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Thank you very much for the attention

Questions?
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Extra slides (I): PIC simulations for DTT (OVT and IVT) 
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Extra slides (II): PIC simulations for DTT (dist. functions) 
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contours plot for

no-effects cases

contours plot for

all-effects cases

shadowed (OVT)

shadowed (IVT)

exposed (OVT)

exposed (IVT)



Extra slides (III): EP2PLUS applications to GITs and HETs
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Extra slides (IV): TPMC-PIC model
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