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Plan of the Talk

• Introduction

• New tools and new objectives of DT experiments

• Baseline results with former Carbon wall

• Preparation and execution of  Baseline experiments in DTE2

• Extention with a new campaign (DTE3) devoted to completion and 

stability.

• Conclusion



DTE1 Campaign with Carbon Wall

• DTE1 experiments were carried out in 
1997 after a Trace Tritium experiment in 
1991

• Achievements:  ~16MW of transient PFUS

and ~4MW quasi-steady for around 5 
sec.

• A large tritium retention was observed in 
the C-wall , well beyond acceptable 
projected limits to  ITER.

• A project to install a Be-W wall in JET 
was started to minimize this effect (ILW) 



JET DTE2 campaign
Goals

• The Main goal was to achieve fusion power up to 10 MW, sustained for 5 s
with the new metal wall.

• Demonstrate reduced Tritium Retention

New Tools
• Increased NBI heating power: from 24 MW to 34 MW.

• Better diagnostics: e. g. High Resolution Thomson Scattering (HRTS), Time Of 
Flight neutron spectroscopy (TOF).

• Improved Real Time Control capabilities. (RTC)



Main Scenarios

• Baseline: peaked, relaxed low q-profile, high current, low N (below 2.0)
• Good confinement relying on high plasma current (Ip≥ 3.0 MA).

• No q-profile shaping techniques required

• Hybrid: controlled flat high q-profile, high N (larger than 2)
• Good confinement relying on high βN (Ip ≤ 2.5 MA).

• q-profile shaping techniques required (timing of heating during, RF current drive etc.)

• Tritium Rich: Hybrid-like with Optimized fuel mix.
• Based on hybrid scenario with T-rich plasma composition

• T rich puffing background plus D neutral beams to maximise beam-target fusion power.

• The scenarios actually studied in DT were prepared in advance in D and T
to be projected to DT and compared with the experimental results.
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Here we shall concentrate on the 

Baseline experiments



Initial observations in D with ILW

• Confinement with ILW was, at 

low-medium plasma energy 

content (IP ≤ 2,5 MA), in line 

with C-Wall and H98(y,2) 

scaling. (Yellow and Green)

• Yet, pulses at higher current, 

initially showed lower 

confinement than their C-Wall 
counter part.

• Such behaviour was 

attributed to an impact of the 

isotope mass on particle 

transport producing different 

density and imputiy behaviour

scaling H98(y2)



Performance recovered in D

• Confinement improved, at higher 

current (up to 3.6 MA) thanks to

- Use of Pellets for ELM triggering

to flush out impurities

- Low gas dosing, for improved 

pedestal and core confinement.

• Some scoping pulses were executed 

at 4 MA. At this current, more caution 

was needed to avoid or mitigate very 

harmful disruptions.



Baseline scenario in D

• The figure beside shows one of the best pulses 

run during the preparation phase:

#96893: 3.5 MA, 3.3 T, q95 3.0, pacing Pellets

• Optimal fuelling: lowest gas rate compatible 

with Type1 ELM regime (good confinement).

• Small pacing D pellets at 45 Hz at H-mode 

entry then reduced to 35 Hz.

• Obtained a neutron yield of ~2.6·1016

neutrons/s averaged over 5 s. with the potential 

to deliver an average 7.7 MW of fusion power 

for 5 s when extrapolated to D-T 

D pellets

Te=Ti

H98~0.89



Path to high current, high performance Baseline

• Keep pedestal collisionality low by 
optimizing pellets and gas-puffing. 

• Use pellets, triggering ELMs, allows to 
flush out impurities and reduce gas puff 
which is beneficial for confinement.

• High heating power (≥ 34 MW tot.) to 
sustain plasma in H-mode well above the 
LH threshold. The latter increases with 
magnetic field and density.

PLH ∝ n0.7 B0.8

JET baseline database at 3.5 MA
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Disruptions

• Disruptions are unwanted, sudden fast termination of the discharge.. Such

events can be minimized with a proper pulse design or mitigated in real time

during the pulse when programmed alarms are issued to the RTC system.

• High performance Baseline operated close to JET operational limits in terms of

plasma current, toroidal field and shape. This implies is a domain where the risk of

disruptions is higher and their impact is stronger.

• The occurrence of disruptions when approaching the operational limits is difficult

to predict and/or avoid. The disruptively at 3.5 MA floats around 60%.

• ENEA Frascati has substantially contributed to the understanding of plasma

termination issues proposing also remedial actions. (Pucella, Giovannozzi)



t = 10.5 s

Impurity Radiation Losses

• With the new ILW, radiation was 
dominated by the W generated in the 
Divertor via sputtering.

• Radiation was mainly confined at the 
low field side. W did not accumulate 
in the centre. When this happens the 
temperature profile becomes hollow, 
the performance deteriorates leading 
eventually to a disruption,

• W accumulation is prevented by the 
screening provided by the ICRH 
central heating. 

• The flushing due to ELMs 
contributes to reduce W entrance in 
the core region.

JPN 96893 - 3.5 MA / 3.35 T



Baseline scenario in T

• Motivation: to explore 

isotope effect for a better 

grounding of projections 

to D-T.

• 99282: similar operational 

parameters as D reference 

(99693). 3.5 MA  3.35 T

• Outcome: scenario 

sustained for no longer 

than 2 s in H-mode. Slow 

core density increase

H pellets

99282  T

H pellets

96893 D-Ref

D pellets

Te=Ti

H98~0.89



Baseline in DT
DT    99948D    96893 ILW

5 s 2 s

• Slightly larger PNBI same PICRH in DT . 

Larger and increasing PRAD.

• Larger incrasing core density in DT. 

Similar core electron and ion 

temperatures

• Smaller and decreasing ELM size in 

DT (weaker impurity flushing). 

Slightly larger gas rate during H-mode 

in DT to try and sustain ELMs.

• Decreasing internal energy starting  

from 10 s. Similar ramp up.

NOTE: DIFFERENT TIME SCALES



Change of isotope

• The passage from D to T and DT produced the following 

main effects.

1. ELMs became less frequent and of smaller amplitude.

2. Density and radiation were increasing during H-mode.

1. The H-mode was sustained for only 2 sec instead of 5.
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Comparison DTE2 vs DTE1 in numbers

• Type 1 ELMs in DTE1, made the control of density and radiation easier..

• PFUS in DTE1 (red) stayed for 5 s above 4 MW. In DTE2 Pfus was unstabl with a peak 

of 8.3 MW, after staying around 2 se, in H-mode it disrupted.

99948 best D-T 
pulse 2021

42982 best D-T 
pulse 1997

Ip [MA] 3.5 3.8

BT [T] 3.35 3.8

NBI [MW] 29 22

ICRH [MW] 3.7 (H-minority) 2 (3He minority)

Prad [MW] 10-15 (increasing to 
30)

5.6 (inter-ELM)

Pfus [MW] 8.3 (peak) >4 (steady)

H98 0.91 0.89

ELMs Compound Type-I



Recovery Campaign (DTE3)

• An extra experimental Campaign, DTE3, was run before the final JET 

shut-down.

• A few shots were dedicated to Baseline run at 3.0 MA / 2.9 T.

• Obtaining a long lived discharge was the main objective of DTE3

• Such objective was actually achived thanks to fuelling and power 

optimization (#104663)
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DTE3
• 104663 3.0 MA, 2.9 T, 27 MW NBI, 3 MW ICRH, ꞵN 1.9, Fuel 1.8 1022 el/s

• 104662 -----------------, 30 MW NBI, ……………., ꞵN 2.0,  …………….......

104662 

104663 

104662 

104661 
• Priority given to stability 

and duration.

• Fuelling raised up to 1.8 1022

el/s.

• Achieved 5 sec. But at 
reduced PFUS (2.3 MW)

Giovannozzi, Pucella, Zotta

Increasing gas rate Increasing gas rate



Conclusions

• Even if the initial goals were not fully achieved, the possibility of operating at good

performance in DT with a metal wall (ILW) was demonstrated at JET. The results will

be a good start point for future experiments including ITER

• In particulat, a high-current baseline scenario for high fusion performance was successfully

developed in JT-ILW in D at 3.5 MA / 3.3 T with the potential to deliver an average 7.7 MW

of fusion power for 5 s when extrapolated to D-T with additional total heating power of

around 34 MW (NBI plus ICRH).

• In the actual experiment, the scenario with 50-50 % D-T fuel mix, could only be sustained at

good performance ( PFUS ≥ 7 MW ) for 2 seconds only

• In an additional campaign (DTE3) all effort was concentrated on stability and duration. At 3.0

MA a duration of 5 sec was achieved at the cost of a reduced PFUS (2.3 MW). This was

achieved by increasing the gas fuelling to favour ELM impurity flushing, and slightly

reducing the heating power.



SPARE SLIDES
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Comparison between D and D-T

3.5 MA / 3.35 T

Comparison D vs DT

• Same profiles at H-mode 

entrance (t= 9.0s)

• After 3 s into the H-mode, the 

density was increasingly higher 

in D-T than in D.

• Temperature profiles very 

similar.

High-resolution Thomson scattering at t =10.57 s



Extrapolation from D to D-T

• Simple extrapolation to a 50-50 D-T 

plasma gives:

• PFUS ~8.8 MW transient

• PFUS ~7.0 MW over 5 s.

• More sophisticated first approach using 

JINTRAC integrated suite of codes with 

QuaLiKiZ transport model gives similar 

performance.

7.0 MW



Lessons learnt

• The transfer of experience gained in D to go to T or DT operation is not straightforward. Relevant 
operational issues arise in the control of density, ELMs and, consequently, of radiation when changing the 
isotope mass. 

• The fuelling needed to find the optimal compromise between fusion power and duration is not easily 
predictable. More experimental time should have been need to find an empirical optimal point.

• On JET, with a Be wall and W divertor, given the available power, a baseline scenario sustained for 5 s was 
obtained at a  plasma current of 3.0 MA  but at the coast of a reduced performance. More time would have 
ben needed to optimise the ELM and Radiation control and to explore higher current domain.

• In addition, a metal wall needs more caution in terms of plasma-wall interaction to prevent damages 
and dangerous disruptions when operating at high current and field as requested in Baseline. Heating power 
marginality adds up to all this.

• JET experimental results are certainly relevant for ITER and inform ITER operation especially whn
approaching the burning phase.



Baseline scenario in D-T (DTE2)
LEFT: #99948

• #99948: similar heating power as in D and T.

• 50-50 % D-T mixture.

• Average Fusion Power of 7.9 MW obtained for 
2 s. 

• Of which, 60% was thermal and 40% beam-
target.

• Early termination was due to radiative collapse

D pellets

H98~0.91

RIGHT : D  vs DT PROFILES @ 11 sec.

• Same profiles at H-mode entrance (t= 9.0s)

• After 3 s into the H-mode, the density was 

increasingly higher in D-T than in D.

• Temperature profiles very similar.

96893 D-Ref

D pellets

Te=Ti

H98~0.89

99948 DT


